Anderson Localization In Optical Mesh Lattices Realized In Time Domain
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Recently, a fiber optic based implementation of lmistices was proposed [1,2], where discrete time-
domain evolution of light pulses is realized. listhystem practically arbitrary complex opticalgrttals can be
realized, which opens the possibility to emulateiotss quantum physics phenomena for optical pulses.
Recently, a number of important effects have beamahstrated in synthetic photonic lattices, inalgdandom
walks of single particlegl], Bloch oscillations and unidirectional invidiy associated with parity-time
symmetry [2], scattering on defect states [3], dethonstration of diametric drive acceleration [Agre we
experimentally demonstrate Anderson localizatioraistatic disordered potential realised in a tiroeidin
optical fiber-based mesh lattice.

The synthetic photonic lattice is formed by twoefidoops with slightly different lengths connecteg a
50:50 coupler. Optical losses in the loops are ipebc compensated by amplifiers. We inject a singlése,
which produces a pulse train circulating in botlds. Every pulse of the train is defined by twocdite
numbers. The number of roundtrips m corresponds ‘time” coordinate. The “space” coordinate n defira
ratio of the pulse delay time to the round-tripgidifference between the two fiber loops.

Applying the phase shifp, which is random oven and constant oven, the optical analogue of a random
potential can be created. As initial conditions wge a single pulse coupled at n=0 into the long,loe. =1
and \,=0. In a regular lattice with no phase shiffs,(, = 0), the wavepacket expandsrirspace proportionally
to the increase ah, similar to a quantum walk [1]. For a random ptitgnthe wavepacket starts is localized
overn, see Fig. 1(a). In experiments, we make avegagver different realizations of the random patdrf
the same strength),,.,. In addition, we repeat experiments for different,,. Large ¢,,., correspond to
stronger potentials and stronger localization. im experiments we checked that the wavefunctioreldgs
exponential profile oven, consistent with Anderson localisation regime [5].
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Fig. 1. (a) Experimentally measured evolution of a waekpaover time without (left) and with (right) raom potential;
(b) Numerically calculated spectrum of modes fdfedént potential strengths; (c) Numerically calteld participation
ratio (~ o~'/2) for the random potential of strengph,,, = 7.

We numerically calculate the eigenmodes for diffiérpotential strengths, and present the spectra in
Fig. 1(b). In a regular lattice, there are two tmedparated by a band-gap even if no potentigipfised. The
band-gap becomes narrower as the random potestiainies stronger, and the gap essentially disappéens
the potential modulation approachés,., = 2m. On the other hand, in agreement with previoudistu[5], we
find that the modes located near the edges ofdhddgap are more localized in spad&ig. 1(c)].

To conclude, the Anderson localization in an opticash lattice realised in time-domain is experitaty
demonstrated. Interplay of photonic band-gaps asatder in such lattices leads to stronger loctitmeat band
edges and gap closure for a strong disorder.
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