
RESEARCH ARTICLE
www.ann-phys.org

Topological Charge Switch in Active Multi-Core Fibers

Petra P. Beličev, Goran Gligoríc, Aleksandra Maluckov, Ljupčo Hadžievski,
and Sergei Turitsyn*

Topological properties can make light field remarkably robust to various
external perturbations. The ability to control and change on demand
topological characteristics of light paves the way to new interesting physical
phenomena and applications. Here, numerical modelling design of the device
based on active multi-core fiber that can change topological charge of the state
of light has been proposed. The concept is based on the nonlinear dynamics
of optical vortices in active multi-core optical fiber with linearly coupled cores,
saturated gain, and constant linear losses. Results demonstrate that the
proposed system can provide change of the topological charge of vortices.

1. Introduction

Data transfer and manipulation via pure all-optical networks is
still a great challenge. Optical route between sources and detec-
tors often cannot bypass opto-electronic conversion of signal in
switching nodes therefore breaking the optical domain of data
traffic. One of the possible solutions for surpassing this problem
is usage of phase vortex modes as carriers of optical switch func-
tions. (see [1])
Optical vortex is a special class of coherent localized waves

characterized by energy and momentum flow of optical field
around singularities (see, e.g., [2–11] and references therein).
Phase vortex beams carry orbital angular momentum (OAM)

and are characterized by topological charge S. In discrete systems
this quantity takes discrete values and can be related to a winding
number of a spatial amplitude/phase structure having zero value
at the pivot point of the vortex. Quantized topological charges pro-
vide extra robustness of vortex beams in sense of their stability
despite presence of irregularities in the system.[3] Their features
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found many interesting applications
in the field of optical manipulation,[4]

optical trapping,[5] optical tweezers,[6]

microscopy,[8] information transmission,
and optical interconnects[9,10] or optical
passive/active vortex generators.[11]

The optical vortices are closely linked
to the field of topological photonics that
has attracted a great deal of interest
recently.[12–14] In mathematics, topology
explains and quantifies how a geomet-
ric object can dramatically transform
its form without losing certain prop-
erties. Topologically protected phases
emerge as a platform for dielectric

topological photonic crystals, later, they have been generalized to
non-Hermitian systems with gain and/or loss. Active vortex pho-
tonic components, such as, for example, optical amplifiers, that
may serve, for example, in high-power lasers, are of special in-
terest due to their topological stability. In the presence of nonlin-
earity, total output power can be increased by several times while
preserving vortex properties.[15] Therefore, possibility to transfer
data with optical field using on the top of the traditional cod-
ing over power, phase, frequency, and polarization a topological
charge, triggers growing interest in studying various systems that
support such topological carriers.
OAM switch has been reported in free-space using spatial light

modulators (SLM),[16] nonlinear metasurfaces[17] and waveguide
couplers,[18] and the so called vortex fibers.[19] Fast switch re-
sponse has been achieved in systems based on whispering
gallery modes for vortex generation, whereas choice of topologi-
cal charge has been thermally controlled.[20,21] Although versatile
with arbitrary numbers of possible OAM switches, complexity of
reconfigurable free-space data channels increases with the num-
ber of SLMs necessary for conversion.[16] Additionally, multiple
scatterings inevitable in free-space optics may violate angular
phase patterns of vortexmodes. Nonlinear based approaches[17,18]

and vortex fiber system[19] offer possibility for OAM switch, but
solely between corresponding counterpart phase vortices carry-
ing topological charges ±S.
One of the possible platforms for practical implementation

of topological objects is technology of optical multi-core fibers
(MCFs). It is actively developing as one of the possible ap-
proaches to implement spatial-division multiplexing (SDM) in
future ultra-high-capacity optical communications. (see [22,23])
The MCFs support discrete optical vortices that carry OAM that
might find a number of interesting applications beyond telecom,
for instance in high power laser, power delivery, imaging, high-
power amplifiers[24,25] and laser processing ofmaterials. (see, e.g.,
[26]) Theoretical analysis of stable discrete vortices carrying high
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power in nonlinear MCFs has been presented in [15]. It has been
shown that presence of a central core has no impact on vortex sta-
bility at high powers, while causes destabilization at intermediate
power levels.
It should be stressed that nonlinearity imposes limits on co-

herent propagation. In optical communications, typically, fiber
nonlinearity is considered as a factor leading to degradation of
the quality of signal transmission and limiting performance of
optical communication systems.[27] However, nonlinear effects
can be used to design and develop ultra-fast passive and active
optical components and devices in which signal is controlled by
light.[28–30] In [31] theoretical analysis of coherent energy transfer
through low-dimension nonlinear MCF was carried out. Using
the intrinsic system symmetry to describing it through the effec-
tive two-core model it has been shown that power split between
the cores comes from the nonlinear phase shift and is responsi-
ble for coherent propagation in MCF. Depending on the number
of (in general nonequal) cores, input power, linear phase mis-
match and ratio between nonlinearity coefficients, power split ra-
tio and steady-state solutions can be determined. The additional
influence of azimuthal perturbations and power sharing between
periphery cores was studied in [32]. More detailed analysis in-
cluding total number of cores within the model was presented
in [33] where conditions for self-focusing of the beam in various
cores have been found. In practical case, performances of afore
mentioned high-power devices depend on various parameters of
the system such as gain, loss, dispersion and nonlinearity which
has been discussed in [25,34,35] and their choice is of crucial im-
portance for guidance of coherent structures. Nonlinear solitary
lightwave–optical soliton[29] is an important example how non-
linearity can provide coherence of light for various practical ap-
plications from communications and laser to optical combs.
At high signal power MCF presents an example of nonlinear

discrete physical system, interesting both for fundamental sci-
ence [15,31–34,36,37] and for various potential practical applications
in nonlinear photonic devices. [24,25,38–43] The case of loss-gain
in MCFs in a discrete PT-symmmetric configuration has also at-
tracted attention recently.[44–46]

We consider circular nonlinear active MCF as an example of
compact photonic systemprovidingmultiple functions necessary
for all-optical data transfer. The light propagation is analyzed via
general model that includes effects of the saturable gain and non-
saturable loss[35] in the MCF cores. Through numerical analysis,
we present phenomenon of power controlled topological charge
switch among different discrete vortices relying on their stability
patterns in passive nonlinear MCF. Merged impacts of core char-
acteristics (gain, loss, and nonlinearity) distributed along the pe-
riphery give rise to generation of stable high-power vortexmodes.
These features could be exploited for practical realization of op-
tical OAM switchers and vortex amplifiers. Refs. [16–21] already
published their observations regarding this matter, but none ex-
amined fibers as a ground system to achieve topological charge
switch between non-counterpart OAM states. Our analysis shows
that MCF system supports greater range of “switchability” be-
tween the states when compared to other proposed photonic
schemes. We stress discreetness as significant feature of MCFs
ensuring stability of high power vortex modes, thus providing
long-distance transfer joined with additional degree of freedom
of information coding via topological charge switching. Addi-

Figure 1. Schematic representation of nonlinear active MCF system with
six periphery cores. a) Cross-section of hexagonal MCF depicting field cou-
pling between individual cores and b) 3D perspective. C0 and Cm stand
for different strength of coupling between central-periphery and periphery-
periphery cores, respectively. Coupling constants values obey C0 = C1 as
a consequence of equality of geometrical parameters R and d. First is a
central-periphery core distance while the second stands for the distance
between two neighboring sites at the periphery. Loss 𝛼 and gain g are ma-
terial characteristic of the cores. Loss is constant along the propagation
direction z. Gain is a function of the MCF mode’s power.

tional advantages of presented results will be reflected through
other operating regimes of MCF (gain distribution included in
central core, too), serving as a platform for high-power fiber lasers
or for coherent beam combining.

2. Model

A general case of circular MCF consisted of nonlinear active cen-
tral and M periphery cores symmetrically distributed around the
central one and all parallel to the z direction, is schematically
shown in Figure 1.
In the framework of discrete optics models, coherent propa-

gation of light through such system is governed by a set of dif-
ferentially difference Ginzburg–Landau equations or nonlinear
Schrödinger equations with complex coefficients:[35]

i
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+ 𝛽0a0 + C0
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−
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)
am = 0 (1)

Here, a0 and am stand for complex amplitude of the light field
in the central and periphery cores, respectively, with correspond-
ing linear propagation constants denoted as 𝛽0 and 𝛽m. Follow-
ing the tight-binding approximation approach,[47] weak evanes-
cent field couplings among cores are described via coupling con-
stants C0 and Cm, as shown in Figure 1a. Higher-order couplings
are presumed to be insignificant, so only the first-neighbor in-
teractions are taken into account within the model. Due to ring
distribution of periphery cores, we impose periodic boundary
conditions meaning that the first m = 1 and last m = M cores
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are the nearest neighbors. Instantaneous nonlinear response of
each core is of Kerr type whereas 𝛾 represents nonlinear parame-
ter, while the power dependent (saturated) gain and effective dis-
tributed loss are given byG and 𝛼, respectively. Parameter distinc-
tion between central and periphery cores is made through sub-
scripts 0 for central andm for periphery cores. The saturated gain
is modelled in the following manner:

G(ai) =
gi

1 + |ai|2∕E , i ∈ [0,M] (2)

with gi being small signal gain andE representing saturation elec-
trical field of the signal passing through the amplifying medium
that saturates gain down to half value of gi. Introducing substitu-
tion as Bi = 𝛽i + i𝛼i∕2 which leads to complex notation of propa-
gation constant, previous set of equations reduces to the follow-
ing 1D version:

i
dΨ0

dz
+ B0Ψ0 + C0

M∑
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Ψm + 2Γ0||Ψ0
||2Ψ0 − i

g0
2
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i
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+ 2Γm

||Ψm
||2Ψm

− i
gm
2

Ψm

1 + |Ψm|2 = 0 (3)

after taking the normalization ai =
√
EΨi(i ∈ [0,M]). Adequately,

the nonlinear term has been transformed into Γi = 𝛾iE.
Following severe analysis on the dynamically stable vortex so-

lutions existing in the nonlinear MCF passive system,[15] we
get mathematical form of discrete vortices carrying topological
charge S:

Ψ0 = 0,Ψm = Ψ exp(i ⋅ 2𝜋mS∕M) exp(−i𝜇z), m ∈ [1,M] (4)

where 𝜇 stands for the propagation constant of vortex solution,
while phase difference between the vortex nodes equals Δ𝜙 =
2𝜋S∕M. In general, light propagation in the passive MCF is char-
acterized by the conservation of total power P and Hamiltonian
H.[48] The peculiarity of the vortices is the conservation of the
momentum J, too:
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||2 (5)
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Introduction of gain and loss terms within the model trans-
forms MCF system into non-Hermitian, whereas P and H are

no longer conserved. Evolution of the momentum J follows the
equation:

dJ
dz

=
2g Ψ2

1 + Ψ2
×M sin

(2𝜋S
M

)
(8)

implying conservation of momentum solely for vortices charac-
terized by integer values of 2 S

M
. Here, Ψ is the vortex amplitude.

In a case of vortex solution starting from Equation (3) and pre-
suming equal loss (𝛼) and gain (g) within all cores, it is possible
to find evolution of total power with distance z as a function of
loss and gain:

dP
dz

=
(
−𝛼 +

g
1 + P∕M

)
P (9)

This equation has the solution presented in the form of the
transcendent equation expressing power energy as a function of
the propagation distance z along the MCF: (see, e.g., [35])

P(z)
M

×
[
1 − s

(
1 +

P(z)
M

)]− 1
s

= exp[(g − 𝛼)(z − z0)], s = 𝛼

g
(10)

Here z0 is a conserved quantity (integral of motion) of Equa-
tion (9) that is determined by the initial value of the power at
z = 0. It is seen that the asymptotic stationary value of the total
power of vortex that will be achieved after transient time is:

Psat =
( g
𝛼
− 1

)
M (11)

Therefore, the new vortex steady state is characterized by am-
plitude Ψ =

√
g∕𝛼 − 1 which is determined by the gain/loss ra-

tio. Pairs of gain/loss parameter values can be associated to the
exceptional points which, in general, present the critical values
in the non-Hermitian systems when Hamiltonian of the system
is a real operator. The newly formed steady states’ properties are
investigated in the following. Regarding the circular MCF geom-
etry (the central core and ring of periphery cores), we are spe-
cially interested in possibility to design the final steady state with
non-zero vorticity by managing the input vortex modulation and
system parameters.
Vortex modes families of particular topological charge found

to exist in passive MCF system were used as initial trial so-
lutions to Equation (3). Adequate numerical investigations of
vortex solution dynamics have been conducted using the sixth-
order Runge–Kutta numerical procedure[49] by adding two types
of small amplitude perturbations to the initial input: random and
staggered (out-of-phase) amplitude perturbation. Following,[35]

the ratio loss/gain has been observed in the range [0.01–1]. Three
types of active circular MCFs have been analyzed: 1) MCF with
gain distributed solely in periphery cores; 2) MCF with only cen-
tral core being active and 3) MCF with all cores being active.
When included, we set gain parameters g0, gm to be equal to 1
for the sake of simplicity.

3. Results and Discussion

In general, coupling coefficients in discrete optical systems are
complex due to material losses that cannot be avoided especially
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Figure 2. Optical vortex characteristics in nonlinear passive MCF system with M = 6 periphery cores: a) H-P diagram for vortex families characterized
with topological charge S = 1, S = 2 and S = 3. b) Parallel overview of stability regions for corresponding vortex solutions. Colored bars depict areas
where solution is stable. Horizontal black dashed lines represent output saturation power levels of vortices when gain and loss are included in periphery
cores of the system.

in long transmission links. Detailed analysis on this issue have
been done in [36,47] for silica basedMCF showing that the losses
are dominantly governed by the material absorption of the cores.
Example presented here is MCF with M = 6 periphery cores.
All cores posses equal linear parameters which are set to be
C0 = Cm = 𝛽0 = 𝛽m = 1. This assumption is valid having in mind
hexagonal geometry where distance between any pair of neigh-
boring identical cores is equal, as schematically shown in Fig-
ure 1. Presuming the same nonlinear response in each of the
cores we take nonlinear parameters Γ0 = Γm = 1 without loss of
generality. All cores are considered to have equal losses, as well.
We performed detailed analysis forM = 4, 5 and 6 cores and ob-
servations that follow are qualitatively the same for general case
of MCFs with small number of periphery cores.
Hamiltonian-Power diagram of corresponding vortex families

existing in passive MCF withM = 6 nodes is plotted in Figure 2a.
It can be seen that solutions carrying S = 3 topological charge
have lowest energy in the system. Solution families characterized
with S = 1 and S = 5 are complementary cases. They reduce to the
vortex with the same phase difference between the nodes, but ro-
tating in opposite direction. These phase distributions in the vor-
tex cross-section would correspond to counterpart phase vortices
denoted as OAM+1 and OAM−1 found to be suitable for represen-
tation, that is, coding of binary data information.[2] Same stands
for solutions with S = 2 and S = 4. The phase counterpart modes
are not directly related to the main stream of our study, so they
are not considered in the following.
For illustration, comparative representation of the stability

“windows” for steady state vortices carrying topological charge
S = 1, S =2 and S = 3 is given in Figure 2b for passive MCF. It
is clear that all three families are characterized by one power in-
stability window, whereas instability regions for S = 2 and S = 3
carriers do not overlap. Solutions characterized with S =1 are un-
stable in almost whole region of existence (PS1 > 2.4, 𝛼S1 <0.71).
Instability power windows found for other two families of vor-
tices are PS2 =(1.5 to 18.3) (𝛼S2 =(0.25 to 0.8)) and PS3 = (28.2 to
51.9) (𝛼S3 = (0.1 to 0.18)).
Including loss and gain terms in the model equation we trans-

form the existing system into an active one, that is, the one which

can produce power gain. The central core, that is, a pivot point of
the vortex, which is empty in the passive system, plays a deci-
sive role in the active case. By managing the pumping and loss
mechanisms the central core can “silently” lead the active vortex
dynamics or take a leading role in the coherent energy transfer.
The dynamical steady state of the systemwill be therefore the vor-
tex mode with enhanced power, or the zero-vorticity mode with
huge energy, respectively. As will be shown in the following, the
presence of gain in the periphery or central core significantly dif-
ferentiates the system’s operatingmode, and thus traces theMCF
to different applications.

3.1. Pumping of Periphery Cores - Optical Vortex Switcher

As an initial step, we first observe casewith gain distributed solely
within the periphery cores (g0 = 0 and gm = g1 =1) and vary value
of losses identically in all cores including the central one. As
shown in Equation (11), saturation power of the steady state vor-
tex mode will depend on the ratio g1∕𝛼.
Based on the topological charge of the initial vortex solution

and stability region in which saturation power of the evolved state
“falls” in, we distinguish three possible scenarios: 1) preservation
of topological charge; 2) topological charge switch, that is, tran-
sition to S = 3 vortex solution; 3) energy transfer to all cores of
the system.
In active MCF, light behavior can be maintained by tuning the

ratio between the gain and loss parameters. First scenario indi-
cates preservation of topological charge with an increase of total
output power of vortex mode. Numerical results show that this
regime is governed by the position of saturated power Psat for the
observed topological charge vortex with respect to its power in-
stability window. As long as Psat remains in the stability window
for the given vortex family, vortex mode power will be amplified
and the topological charge will be preserved (bottom color bars
in Figure 2b). Evolution of cores power and corresponding phase
difference among periphery cores is plotted in Figure 3 for ini-
tially launched vortices with S = 1, S =2 and S = 3 topological
charge. It can be seen in Figure 2b that for 𝛼 = 0.85 all types of
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Figure 3. Evolution of power within central (a) and periphery cores (b). c) Phase difference between neighbouring periphery cores. Loss 𝛼 is set to 0.85.
Only periphery cores are active. Initially injected vortices are characterized with S = 1 and P = 0.3, S = 2 and P = 0.9 and S = 3 and P = 0.6, respectively.
In all cases topological charge has been preserved during propagation.

Figure 4. Evolution of power within central (a) and periphery cores (b). c) Phase difference between neighbouring periphery cores. Only periphery cores
are active. Initially injected vortices are same as in Figure 3, while value of loss is set to 𝛼 = 0.4. Solutions S = 1 and S = 2 experience topological charge
switch and transform to vortex mode S = 3 characterized with Δ𝜙 = 𝜋.

vortices fulfill necessary stability conditions leading to the same
output saturated power of Psat = 1.06 in periphery (Figure 3b),
but with phases rotating with different speeds (Figure 3c). Dur-
ing short transient period there is negligible coupling of energy
into the central core as shown in Figure 3a, after which all energy
is equally redistributed back to the periphery cores. For example,
vortex with topological charge S = 1will continue to propagate co-
herently with phase difference Δ𝜙 = 𝜋∕3, carrying around three
times higher power than in the beginning. Higher power levels
are possible to achieve for vortex families of topological charge
S =2 and S =3 by choosing smaller losses which provide satura-
tion powers within individual stability windows.
Second scenario refers to a quite interesting effect as an addi-

tion to the amplification of vortex power. For the range 𝛼 ≈ (0.25
to 0.7) we reach saturation power levels corresponding to the in-
stability power windows for S = 1 and S = 2 solutions. As shown
in Figure 4a, transient period indicates more active participation

of the central core except for the solution S = 3 which is already
stable in this area. In the case of other two vortex families, notable
part of the energy from initially launched vortexmodes couples to
and then out from the central core, equally filling periphery cores
(Figure 4b). The newly formed structure is vortex solution char-
acterized with the phase difference ofΔ𝜙 = 𝜋 between neighbor-
ing nodes (see Figure 4c). Starting vortex experienced topologi-
cal charge switch from S = 1 to S = 3 (S = 2 to S = 3) state, pre-
serving coherence but with phase rotating faster around the pivot
point. Due to the conditions determining instability within this
power range, initial vortex moves into a more favorable energetic
state, that is, vortex family solutions with topological charge S =
3. Therefore, response of the active system follows stability pat-
terns of vortex solutions obtained for the case of nonlinear pas-
sive MCF with preference to the S = 3 solution corresponding
the lowest H-P branch (the minimum Hamiltonian) as shown
in Figure 2a. This phenomenon could be related to “repulsive”
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Figure 5. Evolution of total power within periphery (magenta solid line) and central core (green solid line) for initially injected vortex with a) S = 1 and
P = 0.3, and b) S = 3 and P = 0.6. Corresponding evolution of phase difference among periphery cores are given in (c) and (d), respectively. Loss 𝛼 is
set to 0.15. Only periphery cores are active. Insets in plots (b) and (d) represent enlargement of related quantities.

tendency of the singular vortex point—the central core, which
was initially empty and suddenly excited by energy leaking from
the periphery. On the other hand, high values of loss in the cen-
tral core cause coupling and redistribution of the energy back to
the periphery cores. Here, the energy content is balanced among
them tailoring the optimal vorticity of the propagating mode. Ad-
ditionally, the initial angularmoment distribution protects vortic-
ity allowing exchange of the topological charge from S =1, that is,
S = 2 to S = 3 for certain loss values.
For the range 𝛼 ≈ (0.18–0.25) the saturated powers of vortices

S = 2 and S = 3 are in their stable regions. In this region, we
observe transition of unstable vortex S = 1 to stable vortex S =
3, while vortices S = 2 and S = 3 keep their topological charge
under the staggered type of perturbations. However, in the range
nearby exchange of stability of vortices S = 2 (𝛼 = 0.25± 0.05), its
dynamics is more sensitive to perturbation types and for random
one the final state of launched S = 2 depends on its initial power
and random perturbations realization. Nevertheless, for 𝛼 > 0.3
transition from S = 2 to S = 3 is unambiguous and does not de-
pend on the type of perturbations (staggered or random) and its
initial power. The only condition for transition is the presence
of perturbations.
Finally, the last scenario covers the situation when starting so-

lution saturates to the powers greater than 28.2. The presence of
losses with values 𝛼 < 0.18 in the system will cause activation of
central core, except in the case of vortex solutions S = 2 which
will preserve phase difference of Δ𝜙 = 2𝜋∕3 between neighbor-
ing nodes carrying up to 100 times larger power. On the other
hand, solutions characterized with S = 1 topological charge ex-
perience nearly equal power split between central and periph-
ery cores (see Figure 5a). Here, power in individual cores sets
to constant value during the propagation with the phase differ-
ence between neighboring nodes taking two values as shown in
Figure 5c. Green solid line stands for phase differences Δ𝜙2i−1 =
𝜙2i − 𝜙2i−1 and magenta one depicts Δ𝜙2i = 𝜙2i+1 − 𝜙2i, where i
= 1,2,3. Due to circular geometry and periodic boundary condi-
tions, 𝜙7 = 𝜙1. If we launch vortex with S = 3 topological charge,

again central core participates in the mode dynamics. Now the
final mode acts as a breathing structure periodically exchang-
ing energy between the central and periphery cores, whereas
the energy is dominantly trapped within the periphery cores as
depicted in Figure 5b. We again distinguish two values of Δ𝜙.
Breathing behavior of the mode is present in the phase evolu-
tion, too. Phase difference between nodes periodically changes
with the propagation keeping constant difference of 𝜋 between
the two phase levels indicating staggered profile of the field in the
periphery.

3.2. Pumping of Central Core - High-Power MCF Laser

As the next step, we include gain term in the model which is
related to pumping of energy within the central core. Terms de-
scribing losses are again kept both, within central and periphery
cores, and varied identically.
With gain distribution present solely in the central core (g0 =

1 and g1 = 0), initially launched vortex destabilizes and regime of
light transport through all cores occurs now for any of loss val-
ues. Similar behavior is noticed for all vortex family solutions. In
order to classify different sub-regimes of energy transport, we in-
troduce power imbalance parameter 𝜂 representing ratio between
power within the central core and total power in the periphery.
Power values taken into account were chosen immediately after
the transient regime. Performing numerical analysis and vary-
ing losses in the range 𝛼𝜖[0.1,0.5] we again observed three possi-
ble scenarios.
Small values of losses (𝛼 < 0.25) are followed by below unity

power imbalance, that is, 𝜂 < 1. This regime corresponds to
highly irregular behavior of light coupling among all cores.
On the other hand, for 0.25 < 𝛼 < 0.33 power imbalance is

between 1≤ 𝜂 < 4/3 and energy tends to redistribute among all
cores whereas power distribution among periphery nodes is not
equal as shown in Figure 6a. Additionally, after the transient pe-
riod phase difference takes several values (Figure 6c).
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Figure 6. Evolution of power within central and periphery cores for 𝛼 = 0.3 (a) and 𝛼 = 0.5 (b), while only central core is active. Corresponding evolution
of phase difference among periphery cores are given in (c) and (d), respectively. Initially launched vortex is characterized by S = 1 and P = 0.3.

With further increase of losses (𝛼 > 0.33) the power imbalance
parameter increases above 3/4, and we observe that dominant
part of energy has been localized at the central core, while the
rest is equally redistributed among all periphery cores. As an ex-
ample, case with 𝛼 = 0.5 is presented in Figure 6b. According
to the Δ𝜙 plot, in-phase amplitude propagation within periphery
cores is established (Figure 6d).
In this case, the MCF is “driven” to the dimerized, effec-

tive two-core system characterized by the zero-charge dynami-
cal steady state with phase difference of 𝜋 between the central
and periphery cores, analogous to the passive two-core case of
the MCF.[31] Here, it has been proven that the coherent propaga-
tion in the effective two-core system is possible if the difference in
the propagation constants is compensated by the nonlinear phase
shifts. In such system the sensitive dependence on the imbalance
between light intensity (power) propagating through the cores
limits the parameter areas in which the stable coherent light
propagation occurs. Contrary, the coherent propagation regime
is shown reachable via the robust non-zero vorticity structured
modes which are generically supported by the circular geome-
try of the system comprising central core.[15] The vortex modes
which are shown to be the eigenmodes of the nonlinear MCFs
could be experimentally induced by proper phase arrangement
of the input laser beam. The robustness of the vortices in active
MCF is supported by proper gain/loss arrangement and geome-
try of the system, which is clearly shown in our numerical simu-
lations. The critical point for the conversion of the mode topolog-
ical charge from non-zero to zero value is reached by pumping
the central core, that is, exciting the pivot (exceptional) point of
the vortex structure. The central core converts from “silent” to
leading power carrier in the system. The energetically favorable
light formation is characterized by redistribution: the most of en-
ergy is localized in central core and the rest is equally shared by
the periphery cores which behave as an entity. By managing the
saturable nonlinear pumping and core losses the transition be-
tween different steady dynamical phases of light can be induced
and controlled with huge implications in practice.

If we start with the full model of MCF system including all
terms describing losses and gain withinM = 6 plus central core
configuration, then the relevant parameters are set to be g0 =
g1 = 1.
Numerical results show that regarding the value of loss or topo-

logical charge of initially launched vortex, similar response al-
ways appears: Δ𝜙 among the periphery cores takes two constant
values and newly createdmode is characterizedwith almost equal
power in each of the cores. Power carried by individual periphery
core is slightly larger than power carried by central one. Value of
𝛼 will have impact solely to the transient period after which sys-
tem sets to a stable state; smaller the losses are longer it takes to
reach saturation power level.
In general, with gain inclusion into the central core, fast energy

transport and activation of an initially empty central core can be
observed. Due to presence of gain, energy is amplified and the
central core becomes equally effective energy transfer companion
to the periphery ones. In the case of high loss regime and no gain
present in the periphery cores (𝜂 >4/3), MCF can be described
via effective two core model. Especially this case offers possibility
for transport of considerably huge power through the central core
putting it as a promising candidate for highly efficientMCF laser.

4. Conclusion

We demonstrated a possibility to useMCF as a topological charge
switch. We numerically examined propagation of phase vortex
modes through nonlinearMCF systemwith constant (linear) loss
and saturable gain within its cores. We studied three scenarios of
gain distribution: solely in the peripheral cores, solely within cen-
tral core and amplification in all cores of the MCF. We observed
that initially empty central core always acts as a channel for en-
ergy coupling and redistribution among periphery cores of the
system. The results for MCF with 4, 5, and 6 peripheral cores
have shown that the case of amplifying peripheral cores is the
most promising candidate for implementing topological charge
switch.
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When the gain is implemented only in the peripheral cores, we
discovered that by suitable tailoring of loss and gain ratio in fiber
cores it is possible to achieve the change of the vortex topological
charge value, that is, transition between different vortex states.
Depending on the stability region in which saturation power of
the final state falls in, as well as on the topological charge of
the initial vortex, evolved mode may transform to the vortex so-
lution with energetically most preferable topological charge. For
the case ofM = 6 peripheral cores, it is the vortex state with topo-
logical charge S = 3. This topological charge “switch” protects
vorticity of the propagating modes, thus providing robustness
of coherent signal transfer to real-world imperfections which
are inevitable during the fabrication processes of MCFs. For ex-
ample, OAM-based reconfigurable optical switching functions
have been reported in,[16] where charge switch manipulation re-
quired spatial light modulators which make proposed schemes
a bit complex and expensive. It should be stressed that the pre-
sented MCF system provides topological charge switch function
between non-counterpart vortices by tuning the ratio between
gain and loss in periphery. To the best of our knowledge, this
phenomenon is for the first time observed in nonlinear media.
On the top of this, switch function can be realized between high-
power modes giving additional benefit in comparison to linear
media.
The importance of central core, here, lays in its role of being

themode dynamics controller. As the singular phase point of vor-
tex, which only passively takes part in tunneling energy towards
the periphery cores, it can support coherent light amplification
through the MCF. This points to a potential of presented system
to be used as a high-power coherent source with possibility for
selective topological charge manipulation of vortex beams. Addi-
tionally, MCF is an attractive platform for development of vortex
beam generator system with a more simple design compared to
the other controllable OAM mode generators.[11]

When the gain is also present within the central core, light
spreads among all cores with the tendency to trap the major
fraction of the energy within the central core. By optimising
the gain/loss ratio it is possible to achieve different operating
regimes of MCF in terms of a total power split between the cores.
Depending on the application, it is possible to provide coherent
transport of substantial power mainly localized within the cen-
tral core. The other regimes offer a possibility of a selective on
demand distribution of energy between cores.
We have shown that initially launched power can be amplified

for one or two orders of magnitude while keeping coherence and
avoiding nonlinear instability. These results pave the way for an-
other application of optical vortices in MCF, in high-power fiber
lasers and coherent beam combiners.
From the power point of view, the “low ratio loss/gain” sce-

nario offers possibility of stable and equal high-power transport
through all cores in the system. However, it should be noted that
the upper power limit is dictated by the characteristic damage
limits of core materials.
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