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Abstract: We present analytical solution describing power evolution in the general two-level
active medium and the generated output power in the Fabry-Perot and ring fiber laser
configurations.
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1. Introduction

Design of modern fiber lasers require massive numerical modelling because of multiple system parameters and com-
plex nonlinear nature of light dynamics in the cavity. Therefore, analytical results for the light evolution in laser cavities
are useful for optimisation and understanding of the underlying dynamics [1, 2,4, 5]. We present here analytical so-
lution for power evolution in general effective two-level active medium. This solution, can be used in a combination
with the amplitude field modelling allowing to reduce by orders of magnitude the simulation time by eliminating the
first iterative procedure. We consider signal evolution in an effective two-level gain model (see e.g. [4]).
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where [l = % z" PI:‘“’ A, and A are the central wavelengths of the pump and the signal, respectively, ¢, and o are the

unsaturated losses, plus and minus stands for forward and backward pump (index p) and signal (index s) waves, P;‘“ and
P are the saturation powers, P~ (z) = Py (z) /P53, P(z) = P* (z) + P~ (2), $*(z) = PF(2) /PP, S(z) = ST (2) + 5 (2)
with the boundary conditions P*(0) = PO+ ,P(L)="P;, ST(0) =S, and S~(L) = S; . The gain is defined G =
ST(L)/S§ . Denote { = 1 a” and y = ” ! o,,. It is easy to check that the following gain equation can be derived from
the system 1:

In[G]+ (Sg +S;)[G—1]+ % (P +P)) [GC exp(—wL) — 1} + oL = 0. (2)

Next we apply this general expression to determine the output power in two classical laser configurations: ring laser
cavity (Fig. 1a) and Fabry-Perot laser configuration (Fig. 1b).
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Fig. 1. a) The ring laser cavity; b) The Fabry-Perot laser cavity.

2. Ring cavity

Consider the ring laser with two external pumps: forward P and backward P, the resonator includes the output
coupler with the power transmission coefficient R, (the out-coupled signal power is given by 1 — Rqy), and the active
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fiber of length L. Let us denote the total cavity loss (including out-coupled power) as X. The lasing condition requires
that the total cavity gain G compensates for all cavity losses X, (G = 1, hence G = 1/X). For the output signal power
at the lasing threshold we get: Poy = PS* (1 — Rout) - ST (L) = PS(1 — Rou)S; /2. Combining this with Eq. 2 it is easy
to find the output power at the threshold of generation:

a1 —Rou 1 . _
Pout = P I_Zt{ln[2]+€(P++P )[pz Cexp(fl//L)} ocL} (3)

The output power as a function of the total cavity losses ¥ and the out-coupling coefficient 1 — R,y is shown in Fig.
2a.
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Fig. 2. The figures a) and b) show the dependence of the output power on the total loss and the out-
coupling loss. The solid lines in figure c) correspond to Py (the ring cavity), dashed lines correspond
to P, (Fabry-Perot cavity). The black and blue lines show the cases £ = 0.9R™ and £ = 0.7R"
respectively, where ¥ includes both the output losses and other cavity losses. The parameters of the
Yb-doped fiber are the same as in [4], but P =5 W and the fiber length L = 1 m.

3. Fabry-Perot cavity

Next we consider the case of the Fabry-Perot cavity. Let us denote by P and P~ the external forward and backward
pumps, and R and R~ the forward and backward signal reflections, respectively. L is the active fiber length. In the
Fabry-Perot cavity the total losses are £ = R* - R~, and the lasing condition gives G = 1/+/Z. For the output signal
powers it is straightforward to derive that: P, = PS(1 —RT) - ST (L) = P%(1 — R*)S§ /VE, Py = P*(1—R") -
57(0) = P$(1—R™)S; /V/Z. After simple algebra we get from Eq. 2 the following expression for two outputs powers
(at the left and right edges):
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The maximum achievable output powers are shown Fig. 2¢ for both configurations. In conclusion, the derived
analytical expressions can be used for optimisation of laser system configurations and for saving time in a more
challenging modelling that includes analysis of optical phase evolution and effects of dispersion and Kerr nonlinearity.
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