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Coexistence of collapse and stable spatiotemporal solitons in multimode fibers2
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We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons,
in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We
discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in
graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode
spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational
approach and derive analytically the stability criterion for input powers for the collapse stabilization.
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Optical solitons [1] are usually associated with low-17

dimensional nonlinear systems such as single-mode optical18

fibers or planar waveguides, and their existence in higher-19

dimensional systems in the form of spatiotemporal localized20

waves is relatively rare, and it requires strong nonlinearity21

saturation [1], spatial nonlocality [2], or other physical mecha-22

nisms arresting wave collapse [3,4]. Wave collapse (also known23

as blow-up or self-focusing) occurs in a range of physical24

systems including nonlinear optics, plasmas, fluid dynamics,25

physics of atmosphere and ocean, and solid-state physics [5].26

Typically, wave collapse is associated with multidimensional27

physical problems [3–13]. From a broader perspective, wave28

collapse is the process of the singularity formation in a finite29

time (or at a finite distance), which is typically arrested by30

higher-order effects not accounted for in the original model.31

Effect of wave collapse can be exploited for compression of32

optical pulses [8–11] and optical pulse fusion [11,12]. An33

arrest of wave collapse and emergence of stable coherent34

structures in higher-dimensional systems have been studied35

in various physical contexts (see, e.g., the review paper [14]36

and references therein). Solitons localized in time and one37

transverse spatial dimension have been observed in quadratic38

media [15], and such solitons suffer from modulation insta-39

bility which breaks elliptical beams into filaments. Three-40

dimensional spatiotemporal solitons were demonstrated in41

arrays of weakly coupled optical waveguides [16,17], but such42

solitons are largely controlled by the lattice discreteness being43

stable for a weak coupling.44

For a long time, the use of single-mode optical fibers was45

the solution of choice for long-haul communication systems,46

allowing one to avoid spatial scattering of light for delivering47

optical signals without spatial-mode dispersion over thousands48

of kilometers. However, fast-growing demands on capacity49

of fiber systems and challenges imposed by nonlinear signal50

interaction attracted recent attention to the technology of51

spatial-division multiplexing (SDM) for future high-capacity52

optical communications (see, e.g., Refs. [18,19] and references53

therein). A solution based on the use of multiple systems over54

parallel fibers, while always possible, is not attractive due to 55

linearly scaled (with growing capacity) transmission costs and 56

power consumption. Potentially, the SDM technology might 57

offer a cost-per-bit reduction and improved energy efficiency. 58

One of the considered possibilities for implementing the 59

SDM technology is the use of multimode fibers (MMFs) for 60

parallel communication channels. In MMFs optical pathways 61

are defined by different spatial modes, and spatial signal 62

processing is required to separate channels at a receiver. Due 63

to highly important SDM applications, MMFs attracted a 64

flurry of renewed interest recently. The MMFs with large core 65

can potentially be used for rather different albeit important 66

high-power applications. However, a similar challenge in 67

this case is to control the spatial coherence and resulting 68

beam size. 69

Recent studies of MMFs suggest that interesting dynamics 70

can occur in the nonlinear regime [20–29]. In this regime, 71

the waveguide modes, which may number from a few to 72

up to thousands, strongly affect each other through non- 73

linear processes [20,25]. The output spatial and temporal 74

properties of light are defined by nonlinear interactions of 75

optical paths corresponding to different spatial modes in 76

MMFs. In general, these different paths through the MMF 77

medium interfere, leading to a spatial speckle pattern. The 78

different time delays corresponding to different spatial modes 79

lead to spatial-mode dispersion and temporal distortion of 80

pulses. However, nonlinear effects produce a spatiotemporal 81

coherence in the propagating light, leading to new interesting 82

possibilities. 83

In the graded-index MMFs an effective (transverse) 84

parabolic potential provides the stabilization mechanism for 85

spatiotemporal pulses. Up to now, the spatially localized 86

structures in multidimensional trapping potentials have been 87

analyzed only in the application to the Bose-Einstein conden- 88

sates. In particular, it was shown that solitons can be stabilized 89

by both three-dimensional parabolic [30,32–38] and periodic 90

[31] potentials. Wave collapse and coexistence of collapsing 91

and stable multidimensional solutions in Bose-Einstein was 92
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FIG. 1. Schematic illustration of stable spatiotemporal solitons
propagating in a graded-index optical fiber. Two types of spatial
cross-section profiles are shown on the right, namely, fundamental
and dipole-mode solitons, respectively.

discussed in Refs. [13,32–35]. However, in the MMFs the93

waveguide forms a two-dimensional (transversal) potential in94

the 2+1+1 nonlinear system. Thus, in mathematical terms,95

the importance of our paper is in the study of the stabilizing96

effect of two-dimensional parabolic potential on nonlinear dy-97

namics of coherent structures in a three-dimensional nonlinear98

dispersive medium.99

In this paper, we analyze stability of spatiotemporal solitons100

in multimode optical fibers in graded-index waveguides and101

demonstrate the existence of stable soliton families, as well as102

stable dipole-mode spatiotemporal solitons [both illustrated in103

Figs. 1(a)–1(c)], in similarity to higher-order localized modes104

in saturable media [39] and recently observed fundamental105

modes of multimode fibers [40].106

I. MATHEMATICAL MODEL107

Pulse propagation in a multimode graded-index optical108

fiber is described in the paraxial approximation by the109

standard nonlinear Schrödinger equation (NLSE) derived110

for the slowly varying pulse envelope (that includes all111

modes):112

i
∂ψ

∂Z
= β2

2

∂2ψ

∂T 2
− 1

2k0

(
∂2ψ

∂x ′2 + ∂2ψ

∂y ′2

)

+U (x ′,y ′)ψ − γ |ψ |2ψ, (1)

where k0 = ω0n0/c is the wave number at the central frequency113

ω0, β2 [fs2/mm] is the group-velocity dispersion and γ [m /W]114

is the nonlinear coefficient, and ψ is the slowly varying115

envelope at the center frequency ω0 with time T in the reference116

frame moving at the group velocity of the pulse. The effective117

potential U (x ′,y ′) describes a variation of the refractive index118

that forms a mode structure in the linear propagation regime.119

In what follows, we consider U (x ′,y ′) = (k0�/R2)(x ′2 +120

y ′2), where � is the index difference between the center121

and cladding of the fiber, and R is the fiber core radius.122

We consider the guiding medium, which corresponds to the123

case � > 0.124

Equation (1) has a Hamiltonian structure, and it can125

be rewritten in the dimensionless form by using a change126

of variables, ψ = √
PnormA, T = T0t, (x ′,y ′) = r0(x,y), Z =127

Z0z, and μ = 2�k2
0r

4
0 /R2 [with (γPnorm)−1 = T 2

0 /|β2| =128

FIG. 2. Families of multidimensional solitons presented through
the key dependencies: (a) Hamiltonian H vs power P and (b) power P

vs propagation constant λ. Red bars in (b) show the analytical estimate
of the critical power. Gray curves in (a) depict analytical solutions for
the fundamental solitons for both stable and unstable branches.

k0r
2
0 = Z0]: 129

i
∂A

∂z
= δH

δA∗ = (2)

−σ

2

∂2A

∂t2
− 1

2

(
∂2A

∂x2
+ ∂2A

∂y2

)
+ μ

2
(x2 + y2)A − |A|2A,

(3)

where σ = −sign(β2) = ±1 (corresponding to the anomalous 130

or normal dispersion, respectively) and the Hamiltonian H is 131

given by the expression 132

2H = (σIt + Ix + Iy + μI3 − I4)

=
∫

dxdydt[σ |At |2 + |Ax |2 + |Ay |2

+μ(x2 + y2)|A|2 − |A|4].

Equations (2) and (3) possess several integrals of motion, in- 133

cluding Hamiltonian H and power (or the number of particles) 134

P = ∫
dtdxdy|A|2. 135

II. MULTIDIMENSIONAL SOLITONS 136

We look for steady-state solutions of Eqs. (2) and (3) having 137

the form of spatiotemporal localized modes propagating in the 138

z direction, A(x,y,z,t) = exp(iλz)U (x,y,t). The waveform of 139

such multidimensional solitons is described by the following 140

equation: 141

δ

δU ∗ (H + λP ) = 0

= λU − σ

2
Utt − 1

2
(Uxx + Uyy)

+ μ

2
(x2 + y2)U − |U |2U.

This means, in particular, that such solutions should correspond 142

to stationary points of Hamiltonian H for a fixed power P . 143

The resulting steady-state solutions (forσ = 1) are the func- 144

tions of the coordinates (x,y) and time t as well as parameters μ 145

and λ. Families of such multidimensional solutions are shown 146

in Figs. 2– 5. 147
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FIG. 3. Examples of three-dimensional solitons, shown for (a.1–
a.3) power |A|2(x,y,t) in the plane (x,y) for different μ and λ =
−0.25

√
μ, and power profiles as cross sections in t and x.

In Fig. 2(a), we observe how an addition of an external148

potential creates the second branch of the stable solutions, with149

a change of the sign of the derivative dH/dP that is a typical150

signature of the transition from unstable to stable solitons.151

The same behavior can be traced in Fig. 2(b) where a sign152

of the derivative dP/dλ changes from negative to positive, in153

accord with the Kolokolov-Vakhitov stability criterion [41]. An154

approximate analytical stable soliton can be obtained by em-155

ploying the variational approximation with the Gauss-Hermite156

trial function provided E < Ecr = 4π
√|β2|R/(γ k0

4
√

6�) (or,157

in dimensionless units, if P < Pcr (μ) = 4π/ 4
√

3μ). Ecr =158

50 nJ for a Graded-Index (GRIN) Multimode Fibers. The159

analytical estimation of the critical power for different values160

of μ is marked in Fig. 2(b) by the red bars. Then, the beam161

width w0 and pulse duration τ are found as162

w2
0 = − 2R

k0

√
6�

cos

(
φ + 2π

3

)
and τ = 4π |β2|w2

0

γE
,

FIG. 4. Families of the dipole-mode spatiotemporal solitons,
shown for (a) Hamiltonian H vs propagation constant λ and (b) power
P vs propagation constant λ.

FIG. 5. Power plots and spatial profiles (top) of the dipole-mode
multidimensional solitons for different parameters μ and λ.

where φ = cos−1 (E2/E2
cr)/3. These theoretical estimations 163

for w0 and τ are valid for the soliton power E below critical. 164

In Fig. 2(a) is shown comparison of the analytical approxima- 165

tion (gray curves) and numerically computed Hamiltonian H 166

versus power P . 167

In addition to the fundamental solitons, we have found 168

solutions with the dipole structure, as shown in Figs. 4 and 5. 169

Again, there are two branches of such solutions with stable and 170

unstable localized modes. 171

III. STABILITY AND VARIATIONAL ANALYSIS 172

Existence of soliton solutions itself is not sufficient to 173

demonstrate their role in the dynamics of nonlinear systems. 174

The critical issue is stability of these steady-state solutions 175

against perturbations. There are two major approaches to 176

analyze stability of soliton solutions. The first approach is 177

to study the spectrum of linearized operators that describes 178

the evolution of small perturbations of the soliton solution, 179

the stability at the infinitesimal level. The second approach is 180

based on the Lyapunov method, which is a generic technique 181

to analyze stability against perturbations including those that 182

are not necessarily small [3]. In the Hamiltonian systems such 183

as that considered here, according to the Lyapunov theorem 184

(see details in Ref. [3]), a soliton solution is stable provided 185

it corresponds to a minimum of the Hamiltonian. It is well 186

known that in two- and three–dimensional NLSEs solitons are 187

unstable and any initial distribution with high enough power N 188

collapses to a singularity [3,4]. In the Hamiltonian systems the 189

classification of a dynamical scenario of a wave is especially 190

transparent. When a Hamiltonian in the considered model is 191

bounded and a solution corresponds to its minimum (or maxi- 192

mum) a corresponding soliton shows up as an attractor. When 193

a Hamiltonian is unbounded, this indicates that soliton solu- 194

tions correspond to saddle points of the Hamiltonian and are 195

unstable, as for instance in three-dimensional NLSEs. In this 196

case, there is no steady-state asymptotic behavior and either 197

initial wave packets spread out by dispersion (or diffraction, 198

depending of the specific model), effectively demonstrating 199

linear dynamics, or the initial field distribution collapses, that 200
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FIG. 6. Two-dimensional Hamiltonian H (a,b) for different val-
ues of the parameter μ: μ = 1 (left) and μ = 0 (right). Here σ = 1 and
P0 = 1. The areas bounded by purple curves correspond to collapse.
Blue curves correspond to the dynamics of an input Gaussian pulse
corresponding to the fundamental soliton.

mathematically corresponds to formation of a field singularity.201

Note that for the considered three-dimensional Hamiltonian202

system, qualitatively, it is clear that at small (x2 + y2) the203

potential cannot stop collapsing dynamics. There is then an204

intriguing question, how recently observed stable solitons in205

multimode fiber coincide with the wave collapse dynamics206

in such systems. To study this problem, we apply the well-207

developed variational approach that is especially effective for208

the Hamiltonian systems.209

Applying the standard variational approach [3,4] and fol-210

lowing an earlier study [42], we analyze the problem of coex-211

istence of stable solitons and wave collapse. The variational212

approach allows us to obtain a qualitative physical insight, and213

it is based on presenting Eq. (2) as the variational problem214

δS = δ

∫
dzdtdxdy

[
i

2

(
A∗Az − AA∗

x

) − H

]
= 0

and approximating true solution A(z,t,x,y) by some trial215

function that mimics the most important properties of the lo-216

calized mode. We refer to details of the well-known variational217

approach [3,4,42] and skip mathematical details focusing218

on new results. We consider a trail function (or the scale219

transformation) that preserves the total power P :220

A(x,y,t,z) =
√

P0

a(z) b1/2(z)
exp

[
−x2 + y2

2a2(z)
− t2

2b2(z)

]

× exp[−iα(z)(x2 + y2) − iβ(z)t2].

Following the standard procedure, we substitute the trial func-221

tion into the action S[A,A∗] (for details see Refs. [1,3,4,42])222

and replace the complex dynamics of waves governed by223

Eq. (2) by a set of two ordinary differential equations approx-224

imating the global dynamics:225

∂2a

∂z2
= −∂H (a,b)

∂a
,

1

σ

∂2b

∂z2
= −∂H (a,b)

∂b
.

Here the effective Hamiltonian becomes a function of the226

scaling parameters a and b:227

H (a,b) = P0π
3/2

2

(
σ

2b2
+ 1

a2
+ μa2 − P0

2
√

2a2b

)
.

Stable solitons (at σ = 1) correspond to minima of the Hamil-228

tonian H (a,b). Straightforward analysis of the extrema points229

FIG. 7. Results of the direct numerical three-dimensional mod-
eling: |A|2(x,0,t,z) isosurfaces present (a) the light bullet regime
with solitonlike dynamics and (b) the spatiotemporal dynamics with
temporal compression.

of H leads to the following condition for the existence of a 230

local minimum of H : 231

(
P0

4

)4

<
1

27μ
or

(
P

4

)4

<
π6

27μ
.

Figure 6 (left) shows the appearance of a local minimum 232

when the existence criterion is satisfied, whereas the right plot 233

represents an unstable case for μ = 0. In particular, Fig. 6 234

(left) shows that, for a signal from the area of minimal H with 235

the power E = Pnormr2
0 T0π

√
πP0 ≈ 29 nJ and nanosecond 236

width, the temporal compression in a GRIN fiber occurs at 237

the width τ ≈ 3.45fs. Figure 7(b) shows typical corresponding 238

three-dimensional dynamics both in the light bullets regime 239

(a) and in a spatiotemporal dynamics with clear temporal 240

compression. 241

IV. CONCLUSIONS 242

We have analyzed systematically both existence and stabil- 243

ity of spatiotemporal solitons in multimode optical fibers, in the 244

framework of the graded-index model. We have revealed that 245

the effective two-dimensional potential formed by the graded 246

refractive index prevents three-dimensional collapse into sin- 247

gularity as is known to occur in uniform three-dimensional 248

media. We have demonstrated the existence of families of 249

stable spatiotemporal solitons and discussed the coexistence 250

of wave collapse and locally stable multidimensional solitons 251

stabilized by the effective low-dimensional parabolic potential 252

in the grade-index multimode fiber, and also found stable 253

dipole-mode spatiotemporal solitons. As a fundamental feature 254

of nonlinear light propagation, these multidimensional solitons 255

might find applications in diverse areas of physics providing 256

new possibilities for control and manipulation of both spatial 257

and temporal properties of light. 258
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