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We consider a model nondispersive nonlinear optical fiber channel with an additive Gaussian noise.
Using Feynman path-integral technique we find the optimal input signal distribution maximizing
the channel’s per-sample mutual information at large signal-to-noise ratio in the intermediate power
range. The optimal input signal distribution allows us to improve previously known estimates for
the channel capacity. We calculate the output signal entropy, conditional entropy, and per-sample
mutual information for Gaussian, half-Gaussian and modified Gaussian input signal distributions.
We demonstrate that in the intermediate power range the capacity (the per-sample mutual infor-
mation for the optimal input signal distribution) is greater than the per-sample mutual information
for half-Gaussian input signal distribution considered previously as the optimal one. We also show
that the capacity grows as log logP in the intermediate power range, where P is the signal power.

PACS numbers:

I. INTRODUCTION.

Information theory is an interdisciplinary science, that
has a broad range of applications in such fields as complex
systems, statistical physics, computer science, data com-
pression, engineering, genetics and etc. One of the most
important and practically significant applications of in-
formation theory is the information transmission in com-
munication systems. Due to a constant demand in the
increase of the communication speed and quality finding
a way to maximize amount of information transmitted
through a noisy information channel has a tremendous
value for modern communication technology. The prob-
lem of an informational capacity of a linear channel with
a Gaussian noise has been first considered by Shannon
in his seminal work [1]. Shannon introduced the channel
capacity as the maximal amount of information per sym-
bol that can be transmitted via the noisy channel, and
demonstrated that the capacity C can be expressed as:

C ∝ log2 (1 + SNR) , (1)

where SNR = P/N is the signal-to-noise power ratio, P
is the signal power, and N is the noise power. This, in
particular, means that for the fixed noise power N one
has to increase the signal power P in order to increase
the capacity.
The interest in nonlinear communication channels has

been growing since the beginning of the 2000’s when fiber
optical communication systems had to extend both band-
width and the system’s reach, that required an increase
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of the input optical power. The Kerr nonlinearity in op-
tical fibres strongly affects the information capacity, that
have been studied both analytically and numerically in
numerous papers, see e.g. [2–9] and references therein.
The information transmission in a simplified model of
a nondispersive nonlinear optical fiber channel was con-
sidered, e.g. in Refs. [10–14]. The study of nonlinear
communication channels where the transmission is af-
fected by the signal power is a difficult problem, espe-
cially at large SNR [6]. The analysis of the capacity of
these channels is technically challenging and new tech-
niques and methods are highly desirable to advance these
studies [3, 13, 15–17]. In order to address the problem
of information capacity we consider a simplified model of
a nonlinear channel with zero dispersion. The methods
developed for and tested on such model channel might
be useful for more complex nonlinear fiber communica-
tion problems. We introduce here a new approach to the
calculation of the conditional probability density func-
tion via the path-integral technique and demonstrate its
application using the considered model channel as a par-
ticular example.

The channel capacity C is defined as the maximum of
the mutual information IPX [X] with respect to the prob-
ability density function PX [X] of the input signal X:

C = max
PX [X]

IPX [X], (2)

where the maximum value of IPX [X] should be found sub-
ject to the condition of fixed average signal power:

P =

∫
DX|X|2PX [X]. (3)

The mutual information of a memoryless channel is de-
fined in terms of the output signal entropy H[Y ] and the
conditional entropy H[Y |X]:

IPX [X] = H[Y ]−H[Y |X], (4)
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with

H[Y |X] = −
∫

DXDY PX [X]P [Y |X] logP [Y |X], (5)

H[Y ] = −
∫

DY Pout[Y ] logPout[Y ], (6)

Pout[Y ] =

∫
DXPX [X]P [Y |X], (7)

where P [Y |X] is the conditional probability density func-
tion (PDF) for an output signal Y when the input signal
is X, and Pout[Y ] is the PDF for an output signal Y . The
measure DY is defined as

∫
DY P [Y |X] = 1, and DX is

defined as
∫
DXPX [X] = 1. The capacity (2), as de-

fined by (4)-(7), is measured in units of (log 2)−1 bits per
symbol (also known as nats per symbol). The input and
output signals are functions of time where the signal’s
spectrum is restricted to a given bandwidth. In general,
a sampling of the temporal signal should be introduced
to define a discrete-time memoryless channel, however,
here we consider only per-sample quantities.
The channel’s mutual information (4) depends on the

probability distribution PX [X] of the input signal. The
input signal PDF maximizing the channel’s per-sample
mutual information is called “capacity-approaching” or
“optimal” PDF P optX [X]. Obviously, the problem of find-
ing the optimal PDF of the input signal for nonlinear
optical channels is of a great practical importance.
In the previous studies of nondispersive nonlinear op-

tical channels (e.g. [11], [13], [14]) the Gaussian and half-
Gaussian input signal PDF’s were used as trial functions
in order to put low bound constraint on the channel ca-
pacity, or to provide an asymptotic estimate of the ca-
pacity in the regime of a large SNR. The authors of [14]
argued, that the half-Gaussian PDF which we denote as

P
(1)
X [X],

P
(1)
X [X] =

exp
{
−|X|2/(2P )

}
π|X|(2πP )1/2

, (8)

provides the best approximation for the “capacity-
approaching” input signal distribution at a large SNR.
In the present paper by solving a variational problem
we show that it is not the case. We find a true opti-
mal distribution P optX [X] (which in fact is different from
half-Gaussian distribution) in the regime of large SNR
for intermediate power range. We explicitly show, that
in this regime the mutual information (4) for our optimal
input signal PDF is greater than the mutual information
for the Gaussian and half-Gaussian input signal distribu-
tions.
The estimates for the capacity of nonlinear fiber chan-

nels with a zero dispersion and an additive white Gaus-
sian noise in the regime of large SNR were obtained in
Refs. [13], [14]. The lower bound for capacity of the
channel, based on a trial Gaussian input signal PDF,
reads [13]:

C ≥ log (SNR)

2
+
1 + γE − log(4π)

2
+O

(
log(SNR)

SNR

)
,(9)

where γE ≈ 0.5772 is the Euler constant. Note that
the second term on the right-hand side of Eq. (9) was
presented as O(1) in Ref. [13] but can be easily calcu-
lated using Eqs. (23) and (24) of Ref. [13]. The physical
meaning of the pre-logarithmic factor 1/2 in Eq. (9) is
that the signal’s phase does not carry information in the
high power regime, see Ref. [14]. In fact, when the sig-

nal power is sufficiently large, i.e. P &
(
Nγ2L2

)−1

, the

signal-dependent phase occupies the entire phase interval
[0, 2π] due to self phase modulation and, as a result, the
phase does not transfer information. Here we denote γ as
the Kerr nonlinearity coefficient and L as the fiber link
length. Capacity estimates in the intermediate power

range N ≪ P ≪ 6π2
(
Nγ2L2

)−1

are presented in Ref.

[14]. For such a power P the following estimate of the
lower bound for the capacity, based on the half-Gaussian
input signal PDF, was derived [14]:

C ≥ − log(γNL) +

γE − 1 + log(3π)

2
+O

(
1/

√
SNR

)
, (10)

where instead of O
(
1/
√
SNR

)
the authors presented the

explicit function of the parameter SNR which decreases
at large SNR, see Eq. (40) in [14]. However, the authors

of [14] did not take into account the 1/
√
SNR corrections

in the output signal entropy H[Y ], therefore, using these
explicit functions in the capacity inequality is beyond
the calculation accuracy. It also means that the result
Eq. (40) of Ref. [14] is not a lower bound on the capacity.
It is worth mentioning that in the inequality (10) there
is an additive term log 2 missing. Also Eq. (40) in [14]
does not recover the Shannon limit log SNR as γ → 0.
Moreover, it is strange that the capacity estimate goes
to infinity when γ tends to zero. So there are obvious
flaws in the inequality (10). Therefore, to understand
the behavior of the capacity in the intermediate power
range the additional study is necessary.

The analytical expression for the conditional probabil-
ity density function of the channel was obtained in the
complex form of an infinite series [10, 13, 14] within the
Martin-Siggia-Rose formalism based on quantum field
theory methods [18]. In the present paper we adopt the
Martin-Siggia-Rose formalism and develop a new method
for the approximate computation of the conditional prob-
ability density function P [Y |X]. Using this method we
obtain the simple analytical expression for the function
P [Y |X] in the leading and next-to-leading order in the

parameter 1/
√
SNR for the intermediate power regime

N ≪ P ≪
(
Nγ2L2

)−1

. (11)

Our method allows us first to derive the analytical ex-
pression for the mutual information and then the optimal
input signal distribution P optX [X] which is different from
the half-Gaussian.
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In [17] a method to calculate the conditional PDF for
a nonlinear optical fiber channel with nonzero dispersion
in the large SNR limit was introduced. Here we illus-
trate this general approach in the application to a simple
nondispersive nonlinear optical fiber channel as consid-
ered in [10, 13, 14]. Since the channel is dispersionless,
the temporal signal waveform does not change during
propagation (note, however, that the signal bandwidth
will grow due to the fiber nonlinearity and signal mod-
ulation). Therefore, instead of considering the evolution
of ψ(z, t) we can consider a set of independent scalar
channels [10, 14] (per-sample channels) governed by the
following model:

∂zψ(z)− iγ|ψ(z)|2ψ(z) = η(z), (12)

where ψ(z) is the signal function that is assumed to obey
the boundary conditions ψ(0) = X, ψ(L) = Y . The noise
η(z) has zero mean ⟨η(z)⟩η = 0 and a correlation func-
tion ⟨η(z)η̄(z′)⟩η = Qδ(z−z′) , so that the SNR = P/QL,
where P and N = QL are the per-sample signal power
and the per-sample noise power, respectively. The con-
nection between the model (12) and the conventional
information-theoretic presentation in the form of an ex-
plicit input-output probabilistic model and the appropri-
ate sampling has been discussed in detail in [10, 13, 14].
In order to illustrate our method we calculate the con-
ditional probability density function, the conditional en-
tropy (5), the output signal entropy (6), and the mutual
information (4) for the per-sample channel. Solving a
variational problem for the mutual information we find
the optimal input signal distribution PX [X] maximizing
the mutual information in the leading order in 1/SNR.
The paper is organized as follows. In Section II we

develop a “quasi-classical” method for the calculation of
the conditional PDF P [Y |X] for arbitrary nonlinearity
in the intermediate power range (11) in the leading and

next-to-leading order in 1/
√
SNR. We find a simple rep-

resentation for P [Y |X] in this case. This allows us to
calculate the output signal distribution Pout[Y ]. The op-

timal signal distribution P optX [X] is found in Section III.
Section IV is focused on the calculation and the compar-
ison of the mutual information for various input signal
distributions. We discuss our results in Section V.

II. THE CONDITIONAL PDF P [Y |X] AND
OUTPUT SIGNAL PDF Pout[Y ] AT LARGE SNR

A. “Quasi-classical”method for the conditional
PDF P [Y |X] calculation

The conditional probability density function can be
written via the path-integral form [13, 18, 19] in a re-
tarded discretization scheme, see e.g. Supplemental Ma-
terials of Ref. [17]

P [Y |X] =
ψ(L)=Y∫
ψ(0)=X

Dψ exp
{
− S[ψ]

Q

}
, (13)

and can be reduced to the quasi-classical form, see
Ref. [19]:

P [Y |X] = e−
S[Ψcl(z)]

Q

ψ̃(L)=0∫
ψ̃(0)=0

Dψ̃ e−
S[Ψcl(z)+ψ̃(z)]−S[Ψcl(z)]

Q ,(14)

where the effective action S[ψ] =
L∫
0

dz
∣∣∣∂zψ − iγ|ψ|2ψ

∣∣∣2,
and the function Ψcl(z) is the ”classical” solution of the
equation δS[Ψcl] = 0, where δS is the variation of our
action S[ψ]. The equation δS[Ψcl] = 0 (Euler-Lagrange
equation) has the form

d2Ψcl
dz2

− 4iγ |Ψcl|2
dΨcl
dz

− 3γ2 |Ψcl|4 Ψcl = 0, (15)

with the boundary conditions Ψcl(0) = X, Ψcl(L) = Y .
In order to find P [Y |X] one should calculate the expo-

nent e−
S[Ψcl(z)]

Q and the path-integral in Eq. (14). First,
we evaluate the exponent. To find it we have to calcu-
late the function Ψcl(z) and then the action S[Ψcl(z)].
We found the general solution Ψcl(z) of (15) implicitly
through the boundary conditions, see Eqs. (A8)–(A12),
and Eq. (A14) in Appendix A. This form of the solu-
tion is inconvenient for further calculations. Therefore
we adopt a different approach and find the solution in the
leading and next-to-leading order in 1/

√
SNR, lineariz-

ing Eq. (15) in the vicinity of the solution Ψ0(z). Here
Ψ0(z) is the solution of the equation (12) with zero noise

and with the boundary condition Ψ0(0) = X = ρeiϕ
(X)

.
The function Ψ0(z) reads

Ψ0(z) = ρ exp
{
iµ
z

L
+ iϕ(X)

}
, (16)

where µ = γLρ2 = γL|X|2. Note that this solution sat-
isfies only the input boundary condition Ψ0(0) = X =

ρeiϕ
(X)

, and it is the solution of Eq. (15) as well. There-
fore, we look for the solution of Eq. (15) in the following
form

Ψcl(z) =
(
ρ+ κ(z)

)
exp

{
iµ
z

L
+ iϕ(X)

}
, (17)

where the function κ(z) is assumed to be small: |κ(z)| ≪
ρ. In a general case, the ratio |κ(z)|/ρ is not necessar-
ily small and it depends on the output boundary con-
dition κ(L). However, the configurations of κ(z) at
which Ψcl(z) significantly deviates from Ψ0(z) (|κ(z)| ∼
ρ) are statistically irrelevant. Indeed, the expansion
S[Ψ0(z)+δΨ(z)] ∝ κ2(z) starts from the quadratic term
at small κ(z), since the action achieves an extremum (the
absolute minimum S[Ψ0(z)] = 0) on the solution Ψ0(z).

Thus the exponent e−
S[Ψcl(z)]

Q and, as a result, the con-
ditional PDF P [Y |X] vanishes exponentially when the
typical κ(z) is much greater than

√
QL.

Substituting Eq. (17) into Eq. (15) and retaining only
terms linear in κ(z)/ρ, we obtain the following equation
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which is still exact in the non-linearity parameter µ:

d2κ
dz2

− 2i
µ

L

dκ
dz

− 4
µ2

L2
Re[κ] = 0. (18)

The boundary conditions for the function κ(z) read

κ(0) = 0, κ(L) = Y e−iϕ
(X)−iµ − ρ ≡ x0 + iy0, (19)

where x0 = Re{κ(L)} and y0 = Im{κ(L)}. The solution
of the linearized boundary problem (18), (19) reads

Re[κ(z)] =
(
µ
µx0 − y0
1 + µ2/3

z

L
+

(1− 2µ2/3)x0 + µy0
1 + µ2/3

) z
L
,

Im[κ(z)] =
{µx0 − y0
1 + µ2/3

(
2µ2z2

3L2
− 1

)
+

µ
(1− 2µ2/3)x0 + µy0

1 + µ2/3

z

L

} z
L
. (20)

After substitution of the solution Eq. (20) in the action
we obtain

1

Q
S[Ψcl(z)] =

1

Q
S
[
(ρ+ κ(z)) exp

{
iµ
z

L
+ iϕ(X)

}]
≈

1

Q

L∫
0

dz
∣∣∣∂zκ − 2i

µ

L
Re[κ]

∣∣∣2 =

(1 + 4µ2/3)x20 − 2µx0y0 + y20
QL(1 + µ2/3)

. (21)

Note that here we retain only the terms quadratic in
κ. However, it is straightforward to calculate the next
correction to the action (21) which is of the order of

1/
√
SNR, see details in Appendix A. A regular pertur-

bative expansion for κ(z) in powers of 1/
√
SNR can be

obtained using the exact equation for the function κ(z),
see Eq. (A19) in Appendix A.

The next step in evaluation of the conditional prob-
ability P [Y |X] is the calculation of the path-integral in
Eq. (14). In order to calculate the path-integral in the

leading 1/
√
SNR order we retain only quadratic in ψ̃

terms in the integrand. Any extra power of ψ̃ or κ is sup-
pressed by the multiplicative parameter

√
QL, because

at small Q the main contribution to the path-integral
comes from ψ̃ ∼

√
QL. Moreover, as soon as we cal-

culate the path-integral in the leading order in Q, we
can substitute Ψ0(z) for Ψcl(z) in the action difference

S[Ψcl(z)+ ψ̃(z)]−S[Ψcl(z)]. To find P [Y |X] in the next-

to-leading order in 1/
√
SNR we should keep both κ(z)

in Ψcl(z) and higher powers of ψ̃ in the action difference.
Details of the path-integral calculation in the leading and
next-to-leading order in 1/

√
SNR are presented in Ap-

pendix B. Taking into account the expression for the
action (A28) and the result of the path-integral calcula-
tion (B22) we obtain the final result for P [Y |X] with the
accuracy of corrections proportional to QL:

P [Y |X] =

exp

{
− (1 + 4µ2/3)x20 − 2µx0y0 + y20

QL(1 + µ2/3)

}
πQL

√
1 + µ2/3

(
1− µ/ρ

15(1 + µ2/3)2
(
µ(15 + µ2)x0 − 2(5− µ2/3)y0

)
−

µ/ρ

135QL (1 + µ2/3)
3

{
µ
(
4µ4 + 15µ2 + 225

)
x30 +

(
23µ4 + 255µ2 − 90

)
x20y0 + µ

(
20µ4 + 117µ2 − 45

)
x0y

2
0 −

3
(
5µ4 + 33µ2 + 30

)
y30

})
, (22)

where x0 and y0 are the functions of X and Y defined
in (19). The corrections to P [Y |X] proportional to QL
can be found in our paper [20]. Note that the conditional
PDF P [Y |X] was already derived in [13] in the form of an
infinite series. Our result (22) for the function P [Y |X] is
the analytic summation of this series in the intermediate
power range

QL≪ P ≪
(
QL3γ2

)−1
. (23)

The left inequality in Eq. (23) comes from the condition
of large SNR, SNR ≫ 1 . The right inequality in Eq. (23)
is the condition for the path-integral corrections (of order
of γ2L3Q|X|2) to be small: see Eq. (B2) in Appendix B,

and Ref. [20]. One can show that the normalization con-
dition

∫
DY P [Y |X] = 1 is fulfilled. Also one can check

that the distribution (22) obeys the following important
property

lim
Q→0

P [Y |X] = δ
(
Y −Ψ0(L)

)
. (24)

The expression (24) is nothing else, but the deterministic
limit of P [Y |X] in the absence of noise. Also Eq. (22)
has the correct limit for the linear channel (γ → 0):

P (0)[Y |X] =
e−|Y−X|2/QL

πQL
, (25)
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that is nothing else but the conditional PDF for the linear
nondispersive channel with Gaussian noise.

B. Output signal PDF Pout[Y ]

Now we proceed to the calculation of the probability
density function of the output signal Pout[Y ]. Let us
consider the integral, see Eq. (7),

Pout[Y ] =

∫
DXP [Y |X]PX [X], (26)

where the function PX [X] is a smooth function that
changes on a scale |X|2 ∼ P which is much greater than
QL. In this case we can calculate the integral (26) up to
terms proportional to the noise power QL by Laplace’s
method [21], see Appendix C. The result has the form:

Pout[Y ] =

∫
DXP [Y |X]PX [X] = PX

[
Y e−iγ|Y |2L

]
. (27)

This result (27) can be obtained without calculations
from the following reasoning. The function P [Y |X], see
Eq. (22), varies on a scale of order QL which is much less
than the scale of PX [X] (the function P [Y |X] is essen-
tially narrower than the function PX [X]). Also P [Y |X]
has the delta-function limit (24) and therefore in the inte-
gral (26) it can be replaced with the delta-function. Note
that to obtain the result (27) we do not require the limit
Q → 0 but only the relation between the scales P and
QL to be satisfied. For the case of the distribution PX [X]
which depends only on |X| we have Pout[Y ] = PX [|Y |].
For the case when PX [X] depends only on |X| we can

obtain Pout[Y ] in all orders in QL. In the remainder of
this Section we consider this case. To obtain Pout[Y ] we
can use the P [Y |X] found in Ref. [13], see Eqs. (11)–(13)
therein. In this case Pout[Y ] is a function of |Y | = ρ′

Pout[ρ
′] =

2e
−
ρ′2

QL

QL

∞∫
0

dρρe
−
ρ2

QLI0

(
2ρρ′

QL

)
PX [ρ], (28)

where I0(z) is the modified Bessel function of the first
kind. Using this representation we can obtain the simple
relation for Pout[ρ

′] calculation in the perturbation theory
in QL. To this end we perform the zero order Hankel
transformation [21]:

P̂ [k] =

∞∫
0

dρρJ0(kρ)PX [ρ]. (29)

of both sides of Eq. (28), then we use the standard inte-
gral [22] with Bessel and modified Bessel functions

∞∫
0

dzze−pz
2

Jν (bz) Iν(cz) =
1

2p
Jν

(
bc

2p

)
e
c2−b2

4p ,

and arrive at the simple relation between the Hankel im-
ages

P̂out[k] = e−k
2 QL

4 P̂ [k]. (30)

Performing the inverse Hankel transformation

PX [ρ] =

∞∫
0

dkkJ0(kρ)P̂ [k], (31)

we obtain

Pout[ρ] = e
QL
4 ∆ρPX [ρ], (32)

where ∆ρ = d2

dρ2 + 1
ρ
d
dρ is the two-dimensional radial

Laplace operator. From the relation (32) the problem
of finding (QL)n corrections to Pout[ρ] reduces to the ex-
ponent expansion and straightforward calculations of the
action of the differential operator ∆n

ρ on PX [ρ].
Let us consider the widely used example of the modi-

fied Gaussian distribution

P
(β)
X [ρ] =

exp
{
−βρ2/(2P )

}
ρβ−2

πΓ (β/2) (2P/β)
β/2

. (33)

For β > 0 the distribution P
(β)
X [ρ] is normalized to unity,

2π
∫∞
0
dρρP

(β)
X [ρ] = 1, and has the average power P ,

2π
∫∞
0
dρρ3P

(β)
X [ρ] = P . The distribution P

(β)
X [X] gen-

eralizes the half-Gaussian distribution (8) for β = 1 and
the Gaussian for β = 2:

P
(2)
X [X] =

1

πP
e−|X|2/P . (34)

Inserting (33) into Eq. (28) we obtain a standard integral
which can be found in [22]. The result for the output
signal PDF has the form:

P
(β)
out [Y ] = 1F1

(
β

2
; 1;

|Y |22P
QL(2P + βQL)

)
×

exp{−|Y |2/QL}
πQL

(
βQL

2P + βQL

)β/2
,(35)

where 1F1(
β
2 ; 1; z) is the confluent hypergeometric func-

tion that reduces to ez for the Gaussian case and to
ez/2I0(z/2) for the half-Gaussian case:

P
(2)
out[Y ] =

1

π(P +QL)
exp

{
− |Y |2

P +QL

}
, (36)

P
(1)
out[Y ] =

1

π
√
QL(2P +QL)

I0

(
|Y |2P

QL(2P +QL)

)
×

exp

{
− |Y |2(P +QL)

QL(2P +QL)

}
. (37)

Note that the result for P
(1)
out[Y ] in Ref. [14], see Eq. (38)

therein, for the half-Gaussian distribution is incorrect.
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We can reproduce the general result of Eq. (27) by con-
sidering Eq. (37) in the case QL ≪ |Y |2 ∼ P . For the
case one can obtain:

P
(1)
out[Y ] ≈ P

(1)
X [|Y |] (38)

with accuracy of the terms proportional to QL. The
result (38) coincides with Eq. (27).

III. OPTIMAL INPUT SIGNAL DISTRIBUTION
AT LARGE SNR

The optimal input signal distribution at large SNR can
be found calculating the mutual information (4) and then
maximizing the result with respect to the input signal
distribution function PX [X]. Let us start from the cal-
culation of the output signal entropy H[Y ], see Eq. (6),
at large SNR.

When the parameter SNR ≫ 1 we can substitute
PX
[
Y exp

{
−iγ|Y |2L

}]
instead of Pout[Y ] due to the re-

lation (27):

H[Y ] = −
2π∫
0

dϕ

∞∫
0

dρ′ρ′PX
[
ρ′eiϕ

]
logPX

[
ρ′eiϕ

]
. (39)

In order to obtain Eq. (39) we have performed the change
of the integration variable ϕ = ϕ(Y ) + γ|Y |2L. One can
see that the output signal entropy (39) coincides with the
input signal entropy H[X] up to terms proportional to
QL.

The conditional entropy H[Y |X] can be calculated
by substitution of P [Y |X] in the form of Eq. (22) into
Eq. (5). After the substitution we change the integra-
tion variables DY ≡ dReY dImY to dx0dy0. Then we
perform integration over x0, y0 and obtain

H[Y |X] = 1 + log(πQL) +
1

2

2π∫
0

dϕ(X)

∞∫
0

dρ ρPX

[
ρ eiϕ

(X)
]
log

(
1 +

γ2L2

3
ρ4
)
, (40)

where the first two terms in the r.h.s. of the equation
come from the Gaussian type integrals over DY in the
conditional entropy definition (5) and the normalization
factor πQL in Eq. (22). The third term in Eq. (40)

comes from the normalization factor
√
1 + µ2/3, see Eq.

(22). Note that there are no terms which are proportional
to

√
QL in Eqs. (39) and (40). Indeed, the integrals with

the odd powers of x0 and y0 vanish when integrating over
x0, y0 in Eq. (5) for H[Y |X].

To find the optimal distribution P optX [X] normalized
to unity and having a fixed average power P one
should solve the variational problem for the functional
J [PX , λ1, λ2]

J [PX , λ1, λ2] = H[Y ]−H[Y |X]− λ1

(∫
DXPX [X]− 1

)
− λ2

(∫
DXPX [X]|X|2 − P

)
, (41)

where λ1,2 are Lagrange multipliers. We substitute
H[Y ] and H[Y |X] from Eqs. (39) and (40) to (41), per-
form the variation of the functional J [PX , λ1, λ2] over
PX [X], λ1, λ2, and write the Euler-Lagrange equations
δJ [PX , λ1, λ2] = 0:∫

DXPX [X] = 1, (42)∫
DXPX [X]|X|2 = P, (43)

−1− logPX [X]− 1

2
log

(
1 +

γ2L2

3
|X|4

)
−

λ1 − λ2|X|2 = 0. (44)

The solution P optX [X] of Eqs. (42)-(44) referred to as the
“optimal” distribution depends only on |X| and has the
form:

P optX [X] = N0(P )
exp

{
−λ0(P )|X|2

}√
1 + γ2L2|X|4/3

, (45)

where functions N0(P ) and λ0(P ) are determined from
the conditions (42), (43):

∫
DXP optX [X] = 2πN0(P )

∞∫
0

dρ ρ e−λ0(P )ρ2√
1 + γ2L2ρ4/3

= 1,(46)
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∫
DXP optX [X]|X|2= 2πN0(P )

∞∫
0

dρ ρ3e−λ0(P )ρ2√
1 + γ2L2ρ4/3

= P.(47)

In a parametric form this dependance reads

λ0(P ) =
γL√
3
α, N0(P ) =

γL

π
√
3G(α)

, (48)

here G(α) =
∫∞
0
dz e−αz/

√
1 + z2 = π

2

(
H0(α)− Y0(α)

)
with Y0(α) and H0(α) being the Neumann and Struve
functions of zero order, respectively. The parameter
α(P ) > 0 emerges as the real solution of the nonlinear

equation d
dα logG(α) = −γLP/

√
3, which comes from

Eqs. (46) and (47). Let us emphasize that the optimal

distribution obtained here, P optX [X] (45), is different from
the half-Gaussian distribution, see Eq. (33) for β = 1,
whereas in the Ref. [14] the half-Gaussian distribution
was considered as optimal. For sufficiently large values
of the power P , such that log(γPL) ≫ 1, we can simplify
(48) using the asymptotic expansions of Y0(α) and H0(α)
at small α, see [22]:

λ0(P ) ≈ 1− log log(Cγ̃)/ log(Cγ̃)

P log(Cγ̃)
,

N0(P ) ≈ γ̃

πP
log−1 [Cγ̃/(Pλ0(P ))] , (49)

where C = 2e−γE and γ̃ = γLP/
√
3. At small P , the

parameter γ̃ ≪ 1, the solution of the Eqs. (46) and (47)
has the form:

λ0(P ) =
1

P

(
1− 2γ̃2

)
, N0(P ) =

1

πP

(
1− γ̃2

)
.(50)

It is worth noting that at γ̃ → 0 our distribution (45)
approaches the Gaussian distribution (34) that is known
to be optimal for the linear channel [1]. In Ref. [20]

we found the first correction to P optX [X] proportional to
QL. In Fig. 1 and Fig. 2 we demonstrate the behavior
of the product Pλ0(P ) and πPN0(P ), correspondingly,
together with the asymptotics (49) and (50) as the func-
tions of dimensionless parameter γ̃.

IV. THE MUTUAL INFORMATION

Now we are ready to consider the mutual information
for different distributions. We start our consideration
from the mutual information for the optimal input signal
distribution P optX [X].
To calculate the mutual information we substitute the

expression (45) for P optX [X] in equations (39)-(40) and
using the definition (4) we obtain

IP optX [X] = Pλ0(P )− logN0(P )− log(πeQL). (51)

This equation gives the mutual information IP optX [X] up

to terms proportional to QL.

-2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1.

log10 γ̃

P
λ
0
(P

)

Figure 1: The product Pλ0(P ) as the function of dimension-
less parameter γ̃ in the logarithmic scale. The solid black
line corresponds to precise value of the product Pλ0(P ), see
Eq. (48); the red dashed dotted line corresponds to the asymp-
totics (49) of Pλ0(P ); the blue dashed line corresponds to the
asymptotics (50) of Pλ0(P ).

-2 -1 0 1 2 3
0

10

20

30

40

log10 γ̃

π
P
N

0
(P

)

Figure 2: The product πPN0(P ) as the function of dimen-
sionless parameter γ̃ in the logarithmic scale. The solid black
line corresponds to precise value of the product πPN0(P ), see
Eq. (48); the red dashed dotted line corresponds to the asymp-
totics (49) of πPN0(P ); the blue dashed line corresponds to
the asymptotics (50) of πPN0(P ).

The mutual information (51) is depicted by the black
solid line in Fig. 3 as a function of signal power P for
the following parameters: Q = 1.5 × 10−7 mWkm−1,
γ = 10−3 mW−1km−1, L = 1000 km. For these realistic
parameters the power range (23) is actually very wide:

1.5× 10−4mW ≪ P ≪ 0.66× 104mW. (52)

There is no simple analytical form forN0(P ) and λ0(P )
therefore to plot Fig. 3, Fig 4, and Fig 5 (see below)
we calculated λ0(P ) and N0(P ) numerically. For large
and small values of the parameter γ̃ we can use the so-
lutions in Eqs. (49) and (50), respectively. At small

γ̃ = γLP/
√
3 we obtain

IP optX [X] ≈ log (1 + SNR)− γ̃2, (53)

which is simply the Shannon capacity log (1 + SNR) at
large SNR of the linear channel (1) with the first non-
linear correction. In Eq. (53) the unity in the logarithm
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Figure 3: The mutual information for various input PDFs as
a function of input average power P for the parameters Q =
1.5 × 10−7 mWkm−1, γ = 10−3 mW−1km−1, L = 1000 km.
(a): The solid black line, blue dashed line, red dashed dotted
line correspond to the optimal PDF P opt

X [X], Gaussian PDF

P
(2)
X [X], and half-Gaussian PDF P

(1)
X [X], respectively.
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Figure 4: The mutual information for various input PDFs as
a function of input average power P for the parameters Q =
1.5 × 10−7 mWkm−1, γ = 10−3 mW−1km−1, L = 1000 km.
The solid black line corresponds to I

P
opt
X

[X]
, see Eq. (51); the

red dashed dotted line corresponds to the mutual information
for the half-Gaussian distribution I

P
(1)
X

[X]
, see Eq. (57) for

β = 1; the red dashed line corresponds to our limit (59) at
γ̃ ≫ 1 for the half-Gaussian distribution; the black dotted
line corresponds to the result [14], see Eq. (10).

is beyond the accuracy of our calculation but we keep
it to bring to notice that the derived expressions (40)
and (53) have the correct limit when the parameter γ
tends to zero (in contrast to the Eq. (35) in Ref. [14]).

In the power sub-interval (γL)−1 ≪ P ≪
(
QL3γ2

)−1
us-

ing Eq. (49) one can obtain following expression for the
mutual information

IP optX [X] = log log
(
CγLP/

√
3
)
− log

(
QL2γe/

√
3
)
+

1

log
(
CγLP/

√
3
)[ log log (CγLP/√3

)
+ 1−

log log
(
CγLP/

√
3
)

log
(
CγLP/

√
3
) ]

. (54)

This equation is obtained with the accuracy
1/ log2(γLP ). One can see that the mutual infor-
mation IP optX [X] grows as log logP .

In the remainder of this Section we perform an analysis

of the mutual information for the distribution P
(β)
X [X],

see Eq. (33), generalizing the half-Gaussian distribution
(8) (see, for example Ref. [14]) and the Gaussian input
PDF (34). In the leading order in 1/SNR from (39) we
obtain

Hβ [Y ] = log

(
P
2π

β
Γ

(
β

2

))
+
β

2
+

2− β

2
ψ
(β
2

)
, (55)

where ψ(z) is the digamma function ψ(z) = Γ′(z)/Γ(z),
where ψ(1) = −γE and ψ(1/2) = −γE − 2 log(2). The
substitution of Eq. (33) into Eq. (40) gives

Hβ [Y |X] =

∞∫
0

dτ
e−ττ

β
2 −1

2Γ
(
β
2

) log

(
1 +

4γ̃2τ2

β2

)
+

log
(
πeQL

)
. (56)

The integral in Eq. (56) can be calculated analytically
using Ref. [22], however, the result of the integration
is cumbersome, hence we do not present it here. One
can easily obtain the mutual information I

P
(β)
X [X]

by sub-

tracting Eq. (56) from Eq. (55):

I
P

(β)
X

[X] = log SNR + log

(
2Γ (β/2)

β

)
−

∞∫
0

dτ
e−ττ

β
2 −1

2Γ
(
β
2

) log

(
1 +

4γ̃2τ2

β2

)
+

β − 2

2

(
1− ψ

(
β

2

))
. (57)

The mutual information is depicted in Fig. 3 for the
Gaussian distribution by the blue dashed line, and for
the half-Gaussian by the red dashed dotted line. One
can see that at small P the mutual information for the
Gaussian distribution is greater than that of the half-
Gaussian, whereas at P > 11mW the mutual information
is greater for the half-Gaussian distribution. Note that
IP optX [X] is greater than I

P
(β)
X [X]

for all values of P , as it

should be. At γ̃ ≫ 1 the mutual information I
P

(β)
X [X]

takes the form

I
P

(β)
X [X]

= − log
(
QL2γ

)
− 2− β

2
+

log 3

2
−

β

2
ψ

(
β

2

)
+ log (Γ (β/2)) . (58)

One can see that at large SNR I
P

(β)
X [X]

goes to a constant

in the interval of power P considered, and this constant
depends on the noise power QL. We remind that IP optX [X]
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Figure 5: Shannon capacity, the capacity of the nonlinear
channel I

P
opt
X

[X]
, and the asymptotic capacity bound (9) from

Ref. [13] for the parameters Q = 1.5 × 10−7 mWkm−1, γ =
10−3 mW−1km−1, L = 1000 km. The red dashed-dotted line
corresponds to the Shannon limit log[1+SNR], the black solid
line corresponds to I

P
opt
X

[X]
, see Eq. (51), the blue dashed line

corresponds to the bound (9).

increases as log logP in the interval under consideration.
The mutual information for the half-Gaussian distribu-
tion (8) in the regime γ̃ ≫ 1 can be obtained as a partic-
ular case of (58) for β = 1:

I
P

(1)
X [X]

= − log
(
QL2γ

)
+

log 3π − 1 + γE
2

+

log 2. (59)

Comparing our expression (59) with the result (40) of
Ref. [14] we have an extra term + log 2 due to our more
accurate calculation of H[Y |X]. Our result (59) and the
result of Ref. [14], see Eq. (10), are presented in Fig. 4.
In Fig. 4 one can see that the mutual information (51)
for the optimal distribution exceeds the limit (59) at P ∼
190mW. At this power the difference between the limit
(59) and I

P
(1)
X [X]

evaluated on the base of Eq. (57) with

β = 1 is of order of 1.5% and getting smaller at higher
P . Also the capacity bound from Ref. [14], see Eq. (10)
therein, is plotted by the black dotted line in Fig. 4.
Since we have now found P optX [X] in the power range

(23), we can calculate an approximation for the capac-
ity of the considered per-sample nonlinear channel. By
definition it coincides with the mutual information ex-
pression (51):

C = IP optX [X]. (60)

Let us emphasize that this result for the capacity is valid
up to terms proportional to QL. The correction to the
capacity proportional to QL can be found in Ref. [20].
The comparison of the approximation (60) with the

Shannon capacity of the linear channel with Gaussian
noise and with the asymptotic capacity bound (9) from
Ref. [13] is presented in Fig. 5. One can see that the
Shannon capacity of the linear channel with Gaussian
noise is always greater than the approximation (60) for

the nondispersive nonlinear fiber channel for the consid-
ered range of P . But the approximation (60) is greater
than the asymptotic capacity bound (9) in the interme-
diate power range (23).

V. CONCLUSION

We have developed a new approach to the calculation
of the conditional PDF via the path-integral represen-
tation (14) at large signal-to-noise ratio for the inter-
mediate power range (23). This approach may be an
especially useful technique for complex nonlinear chan-
nels in which the calculation of the conditional PDF is
technically challenging. Applying our method to the per-
sample nondispersive nonlinear fiber channel, we derived
the compact analytical expressions for the conditional
PDF, conditional entropy and the entropy of the output
signal for different input signal PDFs PX [X]. Moreover,
we solved the variational problem on PX [X] maximizing
the mutual information in the leading order in the noise
power QL in the power range (23). It allows us to find
the optimal input signal distribution (45) and the ap-
proximation for the channel capacity (51) in the power
interval QL≪ P ≪ (γ2QL3)−1, which is extremely wide
for realistic parameters, see (52). The found distribution

P optX [X] is different from the half-Gaussian one, and at

the zero nonlinearity P optX [X] approaches the Gaussian
distribution. We demonstrated that the capacity in the

power sub-interval (γL)−1 ≪ P ≪
(
QL3γ2

)−1
grows

as log logP rather than has constant behavior obtained
in Ref. [14]. In that sub-interval the found capacity is
greater than the bound (9) obtained in Ref. [13] and
lower than the Shannon capacity of the linear channel
with the Gaussian noise.
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Appendix A: THE CLASSICAL SOLUTION Ψcl

AND THE ACTION S[Ψcl].

In Ref. [17] we have shown that in the case SNR =
P/QL≫ 1 the conditional probability can be written in
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the form:

P [Y |X] = exp

{
−S[Ψcl(z)]

Q

}
×

ψ(L)=0∫
ψ(0)=0

Dψ exp

{
−S[Ψcl(z) + ψ(z)]− S[Ψcl(z)]

Q

}
,(A1)

where for the nondispersive model the effective action
reads

S[ψ] =

L∫
0

dz
∣∣∣∂zψ − iγ|ψ|2ψ

∣∣∣2. (A2)

The action (A2) is associated with the l.h.s. of the non-
linear Shrödinger equation

∂zψ(z)− iγ|ψ(z)|2ψ(z) = η(z), (A3)

where the noise η(z) has the Gaussian nature:

⟨η(z)⟩η = 0 , ⟨η(z)η̄(z′)⟩η = Qδ(z − z′) . (A4)

The measure Dψ in Eq. (A1) is defined as

Dψ = lim
∆→0

( 1

∆πQ

)N N−1∏
i=1

dReψi dImψi, (A5)

here ψi = ψ(zi) and ∆ = L
N is the grid space.

Now we consider the difference of actions in the expo-
nent of the path-integral in Eq. (A1).

S[Ψcl(z) + ψ(z)]− S[Ψcl(z)] =
L∫

0

dz
{ ∣∣∂zψ − iγ(2ψ|Ψcl|2 + ψ̄Ψ2

cl)
∣∣2 +

2γIm
[(
∂zΨ̄cl + iγΨ̄cl|Ψcl|2

) (
2Ψcl|ψ|2 + Ψ̄clψ

2
)]

+

γ2
∣∣2Ψcl|ψ|2 + Ψ̄clψ

2 + ψ|ψ|2
∣∣2 +

2γIm
[ (
∂zψ̄ + iγ(2ψ̄|Ψcl|2 + ψΨ̄2

cl)
)
×(

2Ψcl|ψ|2 + Ψ̄clψ
2 + ψ|ψ|2

)]
+

2γIm
[(
∂zΨ̄cl + iγΨ̄cl|Ψcl|2

)
ψ|ψ|2

] }
. (A6)

In Eq. (A1) the function Ψcl(z) is the solution of the
equation δS[Ψcl] = 0 (Euler-Lagrange equation) which
has the form

d2Ψcl
dz2

− 4iγ |Ψcl|2
dΨcl
dz

− 3γ2 |Ψcl|4 Ψcl = 0, (A7)

with boundary conditions Ψcl(0) = X = |X| exp[iϕ(X)],
Ψcl(L) = Y = |Y | exp[iϕ(Y )]. It is easy to find the
solution of Eq. (A7) in the polar coordinate system:
Ψcl(z) = ρ(ζ)eiθ(ζ), ζ = z/L. The solution depends on
four real integration constants. We denote them as E, µ̃,

ζ0 and θ0. There are two different regimes of the solution:

in the trigonometric regime one has E = k2

2 ≥ 0, and in

the hyperbolic regime E = −k2

2 ≤ 0. For both cases
instead of E we introduce the non-negative parameter
k =

√
2|E|.

In the trigonometric case (E = k2

2 ≥ 0) we have the
solution for µ̃ ≥ k ≥ 0:

ρ2(ζ) =
1

2Lγ

(
µ̃+

√
µ̃2 − k2 cos[2k(ζ − ζ0)]

)
,

θ(ζ) =
µ̃

2
(ζ − ζ0) +

√
µ̃2 − k2

sin[2k(ζ − ζ0)]

4k
+

arctan

[
(µ̃−

√
µ̃2 − k2)

tan[k(ζ − ζ0)]

k

]
+ θ0. (A8)

Here the integration constants µ̃, k and ζ0 must be found
from the boundary conditions:

|X|2 = ρ2(0) =
µ̃+

√
µ̃2 − k2 cos[2kζ0]

2Lγ
, (A9)

|Y |2 = ρ2(1) =
µ̃+

√
µ̃2 − k2 cos[2k(1− ζ0)]

2Lγ
, (A10)

ϕ(X) = θ(0) = − µ̃
2
ζ0 −

√
µ̃2 − k2

sin[2kζ0]

4k
−

arctan

[
(µ̃−

√
µ̃2 − k2)

tan[kζ0]

k

]
+ θ0, (A11)

ϕ(Y ) = θ(1) =
µ̃

2
(1− ζ0) +

√
µ̃2 − k2

sin[2k(1− ζ0)]

4k
+

arctan

[
(µ̃−

√
µ̃2 − k2)

tan[k(1− ζ0)]

k

]
+ θ0. (A12)

Then one can find the action

S[Ψcl(z;E =
k2

2
, µ̃, ζ0, θ0)] =

k2

2γL

(
µ̃−√

µ̃2 − k2
sin[2k(1− ζ0)] + sin[2kζ0]

2k

)
. (A13)

In the hyperbolic case (E = −k2

2 ≤ 0) we have the
solution for k ≥ 0 and arbitrary µ̃ in the following form

ρ2(ζ) =
−µ̃+

√
µ̃2 + k2 cosh[2k(ζ − ζ0)]

2Lγ
,

θ(ζ) = − µ̃
2
(ζ − ζ0) +

√
µ̃2 + k2

sinh[2k(ζ − ζ0)]

4k
−

arctan

[
(µ̃+

√
µ̃2 + k2)

tanh[k(ζ − ζ0)]

k

]
+ θ0, (A14)

where µ̃, k, ζ0, and θ0 are derived from the same proce-
dure as in the trigonometric regime. The action reads

S[Ψcl(z;E = −k
2

2
, µ̃, ζ0, θ0)] =

k2

2γL

(
µ̃+√

µ̃2 + k2
sinh[2k(1− ζ0)] + sinh[2kζ0]

2k

)
. (A15)
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Note, there are two solutions of Eq. (A7) with con-
stant ρ(z) = ρ(0) ≡ ρ obeying only the input boundary
condition Ψ0(0) = X. The first one reads

Ψ0(z) = ρ exp
{
iµ
z

L
+ iϕ(X)

}
, (A16)

where µ = γLρ2 = γL|X|2. This function corresponds to
the solution representation (A8) with k = 0 and µ̃ = µ
or to the solution representation (A14) with k = 0 and
µ̃ = −µ. The function Ψ0(z) is the solution of the
Eq. (A3) with zero noise and with the input bound-
ary condition. Furthermore, Ψ0(z) delivers the absolute
minimum of the action (A2): S[Ψ0(z)] = 0. The second
solution of Eq. (A7) with constant ρ(z) is the trigono-
metric regime (A8) case with µ̃ = k = 2µ:

Ψρ=const(z) = ρ exp
{
3i µ

z

L
+ iϕ(X)

}
,

µ = γLρ2 = γL|X|2. (A17)

To find the solution of Eq. (A7) one should express the
integration constant through the boundary conditions.
Instead, we exploit the fact that the noise power QL is
much less than the input signal power. In other words, we
will find a solution of Eq. (A7) that is close to Ψ0(z): it is
the solution of Eq. (A3) with zero noise which provides
the absolute minimum of the action S[Ψ0(z)] = 0. In
that fashion we perform the substitution in Eq. (A7):

Ψcl(z) = (ρ+ κ(z)) exp
{
iµ
z

L
+ iϕ(X)

}
, (A18)

where the function κ(z) is assumed to be small: κ(z) ≪ ρ
for all configurations of Ψcl(z) providing S[Ψcl(z)]/Q =
O(1) when QL tends to zero. We have the following
equation on κ(z) resulting from the Eq. (A7):

d2κ
dz2

− 2i
µ

L

dκ
dz

− 4
µ2

L2
Re[κ] = 4i

µ

Lρ
(κ + κ̄)

dκ
dz

+
µ2

L2ρ

[
5κ2 + 10|κ|2 + 3κ̄2

]
+

|κ|2µ
L2ρ2

[
4iL

dκ
dz

+ 9µκ̄ + 14µκ
]
+

3µ2

L2ρ2
κ3 +

3µ2

L2ρ3
|κ|2

[
3|κ|2 + 2κ2

]
+

3µ2

L2ρ4
|κ|4κ. (A19)

We present κ(z) as a perturbation theory decomposition

in powers of 1/
√
SNR: κ(z) = κ1(z)+κ2(z)+ . . ., where

κ1(z) is of 1/
√
SNR order and provides the leading order

contribution, κ2(z) is of 1/SNR order, and so on.
The linearized equation for the function κ1(z) =

x1(z) + iy1(z) can be obtained from Eq. (A19) by omit-
ting the r.h.s. of this equation:

d2κ1

dz2
− 2i

µ

L

dκ1

dz
− 4

µ2

L2
Re[κ1] = 0. (A20)

The boundary conditions Ψcl(0) = X and Ψcl(1) = Y ≡
ρ′eiϕ

(Y )

lead to

κ1(0) = 0,

κ1(L) = x0 + iy0 = ρ′ei(ϕ
(Y )−ϕ(X)−µ) − ρ. (A21)

The solution κ1(z) = x1(z) + iy1(z) of the linearized
boundary problem (A20), (A21) is polynomial

x1(z) =
(
− µa1(X,Y )

z

L
+ a2(X,Y )

) z
L
,

y1(z) =
(
− 2

3
µ2a1(X,Y )

z2

L2
+

µa2(X,Y )
z

L
+ a1(X,Y )

) z
L
, (A22)

where coefficients a1(X,Y ) and a2(X,Y ) can be found

from the boundary conditions (A21) and have the form:

a1(X,Y ) =
−µx0 + y0
1 + µ2/3

,

a2(X,Y ) =
(1− 2µ2/3)x0 + µy0

1 + µ2/3
, (A23)

with x0 = x0(X,Y ) and y0 = y0(X,Y ) being determined
from Eq. (A21). In the leading in

√
QL order the action

reads

1

Q
S
[
Ψ0(z) + κ1(z)e

iµ zL+iϕ(X)
]
≈

1

Q

L∫
0

dz

[∣∣∣∂zκ1 − 2i
µ

L
Re[κ1]

∣∣∣2] =
=

(1 + 4µ2/3)a21 − 2µa1a2 + a22
QL

=

(1 + 4µ2/3)x20 − 2µx0y0 + y20
QL(1 + µ2/3)

. (A24)

Let us proceed to the next-to-leading order corrections
to P [Y |X]. We should calculate the next approxima-
tion κ2(z) to the solution (A18). Taking into account
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Eq. (A20) we present the equation for κ2(z) in the form

d2κ2

dz2
− 2i

µ

L

dκ2

dz
− 4

µ2

L2
Re[κ2] =

4i
µ

Lρ
(κ1 + κ̄1)

dκ1

dz
+

µ2

L2ρ

[
5κ2

1 + 10|κ1|2 + 3κ̄1
2
]
, (A25)

where the boundary conditions for κ2(z) read κ2(0) =
κ2(L) = 0. The solution κ2(z) = x2(z) + iy2(z) of
Eq. (A25) is polynomial in z and quadratic in x0 and
y0:

x2(z) =− µ/ρ

270(1 + µ2/3)3

(
1− z

L

) z
L
×{

µ
(
2µ4 − 15µ2 + 585

)
x20 + 2

(
13µ2

(
µ2 + 15

)
− 180

)
x0y0 + µ

(
2µ2 + 15

) (
5µ2 − 9

)
y20−

5
(
µ2 + 3

) z
L

(
µ
(
µ2 − 15

)
x20 − 4

(
µ2 − 6

)
x0y0 + µ

(
µ2 + 9

)
y20
)
+

5µ
(
µ2 + 3

) z2
L2

(
3
(
5µ2 − 3

)
x20 − 36µx0y0 −

(
µ2 − 15

)
y20
)
+

20µ2
(
µ2 + 3

) z3
L3

(y0 − µx0)
(
2µy0 −

(
µ2 − 3

)
x0
)
− 20µ3

(
µ2 + 3

) z4
L4

(y0 − µx0)
2
}
.

(A26)

y2(z) =− µ/ρ

270(1 + µ2/3)3

(
1− z

L

) z
L
×{(

7µ4 − 75µ2 + 360
)
x20 + 6µ

(
µ2 + 75

)
x0y0 + 3µ2

(
5µ2 + 39

)
y20+

2
z

L

((
µ6 − 4µ4 + 255µ2 + 180

)
x20 + µ

(
µ2 + 15

) (
13µ2 + 3

)
x0y0 + µ2

(
5µ4 + 36µ2 − 9

)
y20
)
−

14µ
(
µ2 + 3

) z2
L2

(y0 − µx0)
((
15− 4µ2

)
x0 + 9µy0

)
+ 84µ2

(
µ2 + 3

) z3
L3

(y0 − µx0)
2
}
.

(A27)

In the leading, see Eq. (A24), and next-to-leading order in
√
QL the action reads

1

Q
S[Ψcl(z)] ≈

(1 + 4µ2/3)x20 − 2µx0y0 + y20
QL(1 + µ2/3)

+
µ/ρ

135QL (1 + µ2/3)
3

{
µ
(
4µ4 + 15µ2 + 225

)
x30 +(

23µ4 + 255µ2 − 90
)
x20y0 + µ

(
20µ4 + 117µ2 − 45

)
x0y

2
0 − 3

(
5µ4 + 33µ2 + 30

)
y30

}
. (A28)

Appendix B: THE PATH-INTEGRAL
CALCULATION.

To calculate the conditional probability density
P [Y |X] in Eq. (A1) one should find the pre-exponent
path-integral, referred to as the quantum corrections near
the classical solution Ψcl(z), in the leading and next-to-

leading order in 1/
√
SNR:

IQC [Ψcl(z)] =

ψ(L)=0∫
ψ(0)=0

Dψ e
−
S[Ψcl(z) + ψ(z)]− S[Ψcl(z)]

Q . (B1)

In what follows we are interested in the leading and next-
to-leading order corrections for the path-integral (A1).

That is why we retain only quadratic in ψ terms in
Eq. (A6). All these terms are placed in the second line
of Eq. (A6). As it will be demonstrated below an ex-
tra power of ψ results in an extra power of

√
QL. In the

leading and next-to-leading order calculation of the path-
integral we should take into account the first correction
(κ1(z) ∝

√
QL) to the solution Ψcl(z), see Eqs. (A18)

and (A22). Now we put (A18) with κ1(z) and ψ(z) in
the form ψ(z) = u(z) exp

{
iµ zL + iϕ(X)

}
into the second

and third lines of Eq. (A6). In our approximation we
obtain
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S[Ψcl(z) + ψ(z)]− S[Ψcl(z)] ≈
L∫

0

dz

{∣∣∣∂zu− i
µ

L
(u+ ū)

∣∣∣2 +
2
µ

Lρ
Im

[
2
(
∂zū+ i

µ

L
(u+ ū)

)(
u(κ1 + κ̄1) + ūκ1

)
+
(
∂zκ̄1 + i

µ

L
(κ1 + κ̄1)

)(
2|u|2 + u2

)]}
. (B2)

We substitute this difference in the exponent in Eq. (B1). Then we expand the exponent at small Q and obtain the
following expression within the accuracy of terms proportional to QL:

exp

{
−S[Ψcl(z) + ψ(z)]− S[Ψcl(z)]

Q

}
≈ exp

{
− 1

Q

L∫
0

dz
∣∣∣∂zu− i

µ

L
(u+ ū)

∣∣∣2}{1−
2µ

QLρ
Im

L∫
0

dz
[
2
(
∂zū+ i

µ

L
(u+ ū)

)(
u(κ1 + κ̄1) + ūκ1

)
+
(
∂zκ̄1 + i

µ

L
(κ1 + κ̄1)

)(
2|u|2 + u2

)]}
. (B3)

Here we imply that any extra power of u or κ is sup-
pressed by the multiplicative parameter

√
QL, because

at small Q the main contribution to the path-integral
comes from u ∼

√
QL. We substitute this expansion

(B3) into the path-integral (B1) and change the variable
from ψ(z) to u(z) and arrive at

IQC [Ψ0(z)] =

u(L)=0∫
u(0)=0

Du e
−

∫ L
0
dz
∣∣∣∂zu− i µL (u+ ū)

∣∣∣2
Q ×

[
1− 4µ

QLρ
Im

L∫
0

dz
{(
∂zκ̄1 + i

µ

L
(κ1 + κ̄1)

)(
|u|2 + u2

2

)
+

(
∂zū+ i

µ

L
(u+ ū)

)(
u(κ1 + κ̄1) + ūκ1

)}]
. (B4)

To calculate the leading and next-to-leading order con-
tributions to IQC [Ψ0(z)] in

√
QL we should take the first

and the second terms in the square brackets in Eq. (B4),
respectively. We start our consideration from the leading
order. In this case we represent the path-integral

I
(0)
QC [Ψ0(z)] =

u(L)=0∫
u(0)=0

Du e
−

∫ L
0
dz
∣∣∣∂zu− i µL (u+ ū)

∣∣∣2
Q (B5)

in the retarded discretization scheme:

I
(0)
QC [Ψ0(z)] = lim

N→∞

(
N

πQL

)N
×

∞∫
−∞

N−1∏
i=1

du
(1)
i du

(2)
i exp

{
− N

QL

N−1∑
i=0

[
(u

(1)
i+1 − u

(1)
i )2 +

(u
(2)
i+1 − u

(2)
i − 2

µ

N
u
(1)
i )2

]}
, (B6)

where we use the measure (A5) and the notations u(zj) =

u
(1)
j + iu

(2)
j , zi = ∆ i, ∆ = L

N and u
(1)
0 = u

(1)
N+1 = u

(2)
0 =

u
(2)
N+1 = 0. The sequential integration over u

(2)
N−1, u

(2)
N−2,

. . ., u
(2)
1 is trivial:∫

dY exp

{
− (A− Y )2

2τ1
− (Y −B)2

2τ2

}
=(

2π
τ1τ2
τ1 + τ2

)1/2

exp

{
− (A−B)2

2(τ1 + τ2)

}
. (B7)

It leads to the remaining integral (over u
(1)
i , i =

1, . . . , N − 1) of the form

lim
N→∞

(
N

πQL

)N
(πQL/N)

N−1
2

√
N

×

∞∫
−∞

N−1∏
i=1

du
(1)
i e−

N
QL

∑N−1
i,j=1 u

(1)
i Mi,j(α)u

(1)
j , (B8)

where we denote α = 4
N

(
µ
N

)2
, and the (N−1) by (N−1)

matrix M(α) has the following elements: Mi,i = 2 + α,
Mi,i±1 = −1 + α, i = 1, . . . , N − 1, Mi,j = α, j ̸= i, j ̸=
i ± 1. It is straightforward to calculate the determinant
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of M(α) and hence to perform the Gaussian integration

over u
(1)
i

det[M(α)] = N + α
N2(N2 − 1)

12
, (B9)

I
(0)
QC [Ψ0(z)] =

1

πQL
√

1 + µ2/3
. (B10)

To calculate the next-to-leading order contribution in√
QL to the path-integral (B4) we should take the second

term in the square brackets in Eq. (B4). To find this cor-
rection we should calculate the integral (the correlator):

⟨u(α)(z)u(β)(z′)⟩ ≡ QLGα, β(z, z′) ≡ 1

I
(0)
QC [Ψ0(z)]

×

u(L)=0∫
u(0)=0

Du e
− 1
Q

∫ L
0
dz

∣∣∣∂zu−i µL (u+ū)

∣∣∣2
u(α)(z)u(β)(z′),(B11)

where we have introduced the dimensionless Green ma-
trix Gα, β(z, z′), α, β = 1, 2. The standard method for
the Green matrix calculation is the calculation of the
generating functional [18]:

Z[J1, J2] =

u(L)=0∫
u(0)=0

Du exp

{
− 1

Q

L∫
0

dz
∣∣∣∂zu− i

µ

L
(u+ ū)

∣∣∣2 +
L∫

0

dz
(
J1(z)u

(1)(z) + J2(z)u
(2)(z)

)}
, (B12)

then any correlator can be derived from the variation of
the Z[J1, J2] over Jα, for example

⟨u(α)(z)u(β)(z′)⟩ = QLGα, β(z, z′) =

1

Z[J1, J2]

δZ[J1, J2]

δJα(z)δJβ(z′)

∣∣∣
J1=0, J2=0

. (B13)

The calculation of the generating functional can be per-
formed in the same way as the calculation of the nor-

malization integral (B6): the integration over u
(2)
j fol-

lowed by the integration over u
(1)
j . The only new ele-

ment in the calculation of the Gaussian integrals with the
sources Jα is the inverse matrix M(α)−1

i,j for M(α)i,j =
α + 2δi,j − δi,j+1 − δi+1,j defined herein above, see the
text after Eq. (B8). The calculation is simple (after the
observation that det[M(α)]M(α)−1

i,j is linear in α), and
we only present the result

M(α)−1
i,j = N

[
− αN4

4 det[M(α)]

i

N

(
1− i

N

)
×

j

N

(
1− j

N

)
+

i

N

(
1− j

N

)
θ(i ≤ j) +

j

N

(
1− i

N

)
θ(i > j)

]
, (B14)

where det[M(α)] is given by Eq. (B9), and
limN→∞

(
αN4/(4 det[M(α)])

)
= 3µ2/(3 + µ2). We

present the result of the generating functional calcula-
tion in the form of a Green matrix convolution with the
sources Jα:

Z[J1, J2] =
e
QL
2

∫ L
0
dz

∫ L
0
dz′Jα(z)G

α, β(z,z′)Jβ(z
′)

πQL
√

1 + µ2/3
, (B15)

where the Green matrix is Hermitian and it has the fol-
lowing elements:

G1, 1(z, z′) = G1, 1(z′, z) =

{
θ(z′ − z)

z

2L

(
1− z′

L

)
− 3µ2

4(3 + µ2)

(
1− z

L

)(
1− z′

L

)
zz′

L2

}
+ {z ↔ z′}, (B16)

G1, 2(z, z′) = G2, 1(z′, z) =
µ

2(3 + µ2)

{
θ(z − z′)

z′

L

(
1− z

L

)(
3
z′

L
− 3

z

L
+
z′

L
µ2
[
1 +

z

L

(
2
z′

L
− 3
)])

+

θ(z′ − z)
z

L

(
1− z′

L

)(
3
z′

L
− 3

z

L
+
(z′
L

− 1
)
µ2
[ z
L

+ 2
z′

L

( z
L

− 1
)])}

, (B17)
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G2, 2(z, z′) = G2, 2(z′, z) =

{
θ(z − z′)

6(3 + µ2)

(
1− z

L

)z′
L

[
9 + 3µ2

(
1 +

z

L
− 2

z2

L2
+ 3

zz′

L2
− 2

z′2

L2

)
+

2µ4 z
′

L

( z
L

− 1
)(z′

L
− 3

z

L
+ 2

zz′

L2

)]}
+ {z ↔ z′}. (B18)

The second way to obtain the expression for the correla-
tor (B11) and Eqs. (B16)-(B18) reflects the fact that the
Gaussian integral (B12) is saturated in the vicinity of the
saddle-point solution of the equation of motion (i.e. the
Euler-Lagrange equation for the action in question) [19].
Thus to find it we should solve the set of equations

K̂α,γG
γ,β(z, z′) =

1

L
δβαδ(z − z′), (B19)

where the matrix differentiation operator K̂ for the func-
tions u(z = 0) = u(z = L) = 0 is defined as

− 1

Q

L∫
0

dz
∣∣∣∂zu− i

µ

L
(u+ ū)

∣∣∣2 =

− 1

2Q

L∫
0

dzu(α)(z)K̂α,βu
(β)(z), (B20)

and it has the form

K̂ = 2

(
−∂2z +

4µ2

L2 , −2 µL∂z
2 µL∂z, −∂2z

)
. (B21)

The boundary conditions for equations (B19) are as fol-
lows: Gα,β(z = 0, z′) = Gα,β(z = L, z′) = 0. The prob-
lem has the unambiguous solution (B16)-(B18). Note

that the homogeneous solution of the Eq. (B19) is gov-
erned by the solutions of Eq. (A20) obtained above.

Using the correlator (B11) with (B16)-(B18) one
can easily calculate the first correction presented in
Eq. (B4). This term is proportional to κ1(z) ∝

√
QL

hence delivering the leading correction to the leading
term (B10). The subsequent integration of the elements
(B16)-(B18) with the solution (A22) for κ1(z) is trivial,
however the proper way to understand the discontinuous
derivatives of the Green matrix elements (B16)-(B18) at
the same point z′ = z is the retarded scheme adopted
in our approach [17]: ∂zG

α,β(z, z′)|z′=z → ∂zG
α,β(z +

0, z′)|z′=z. Finally we have

IQC [Ψ0(z)] =
1

πQL
√
1 + µ2/3

[
1− µ/ρ

15(1 + µ2/3)2
×

(
µ(15 + µ2)x0 − 2(5− µ2/3)y0

)]
. (B22)

This result is obtained with the accuracy of the terms
proportional to QL. In Ref. [20] we found these correc-
tions to the path-integral contribution as well.

Finally, from Eq. (A28) for the exponent factor and
from Eq. (B22) for the pre-exponent factor we arrive at
the expression

P [Y |X] =

exp

{
− (1 + 4µ2/3)x20 − 2µx0y0 + y20

QL(1 + µ2/3)

}
πQL

√
1 + µ2/3

(
1− µ/ρ

15(1 + µ2/3)2
(
µ(15 + µ2)x0 − 2(5− µ2/3)y0

)
−

µ/ρ

135QL (1 + µ2/3)
3

{
µ
(
4µ4 + 15µ2 + 225

)
x30 +

(
23µ4 + 255µ2 − 90

)
x20y0 + µ

(
20µ4 + 117µ2 − 45

)
x0y

2
0 −

3
(
5µ4 + 33µ2 + 30

)
y30

})
. (B23)

Now it is easy to show, that the normalization condition∫
DY P [Y |X] = 1 (B24)

is fulfilled.

Appendix C: CALCULATION OF Pout[Y ].

Let us consider the integral Pout[Y ] =∫
DXPX [X]P [Y |X]. In our case the measure

DX = dxdy, where x = Re{X}, y = Im{X}, so
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we should consider the integral:

∞∫
−∞

dxdyPX [x, y]P [Y |X] . (C1)

In the integral the scale of variation of the function
PX [x, y] is P ≫ QL. The scale of variation of the
function P [Y |X] is QL, and this function has the form
Eq. (22), therefore we can use Laplace’s method. To
demonstrate that one can see that the function P [Y |X]

depends on |X|, x0 = Re{X̄(Y e−iµ − X)/|X|}, y0 =
Im{X̄(Y e−iµ−X)/|X|}, and reaches the maximal value
at the point x0 = y0 = 0. Let us change the integration
variables x, y to η1, η2, where η = η1 + iη2 = (Xeiµ −
Y )e−iϕ

(Y )

. Here ϕ(Y ) is the phase of the Y . The inverse

transformation reads X = (η + |Y |)e−iγL|η+|Y ||2+iϕ(Y )

.
In the new variables the function P [Y |X] reaches maxi-
mum at the point η1 = η2 = 0. The integral (C1) takes
the following form

∞∫
−∞

dη1dη2P [Y |X]PX

[
Re
{
(η + |Y |)e−iγL|η+|Y ||2+iϕ(Y )

}
, Im

{
(η + |Y |)e−iγL|η+|Y ||2+iϕ(Y )

}]
, (C2)

here we have used the fact that the Jacobian determinant for the variables transformation is equal to unity. Since
P [Y |X] reaches its maximum at the point η = 0 we can expand the functions PX [X] and P [Y |X] in the vicinity of
the point:

PX [Re{(η + |Y |)e−iγL|η+|Y ||2+iϕ(Y )

}, Im{(η + |Y |)e−iγL|η+|Y ||2+iϕ(Y )

}] ≈(
PX [Re{Y e−iµ̃}, Im{Y e−iµ̃}] + terms proportional to η + . . .

)
, (C3)

P [Y |X] ≈ 1

πQL
√
1 + µ̃2/3

exp

{
− (1 + 4µ̃2/3)η21 − 2µ̃η1η2 + η22

QL(1 + µ̃2/3)

}(
1 + terms proportional to η and

η3

QL

)
, (C4)

where we have used the fact that in the vicinity of the
point η = 0 we have x0 = −η1 and y0 = −η2 up to
higher powers of η. In Eqs. (C3) and (C4) we have the
parameter µ̃ = γL|Y |2.
One can see that at large µ̃ the exponent contains three

different terms:

(1 + 4µ̃2/3)η21 − 2µ̃η1η2 + η22
QL(1 + µ̃2/3)

≈

4η21
QL

− 6
η1η2
QLµ̃

+
3η22 − 9η21
QLµ̃2

. (C5)

Therefore to use Laplace’s method we have to transform
our quadratic form

(η1, η2)A(η1, η2)
T =

(1 + 4µ̃2/3)η21 − 2µ̃η1η2 + η22
QL(1 + µ̃2/3)

(C6)

to the canonical form. The matrix of quadratic form is:

A =
1

QL (1 + µ̃2/3)

(
1 +

4µ̃2

3
−µ̃

−µ̃ 1

)
. (C7)

The eigenvalues of the matrix A are

λ1 =
1

QL

(
1 + µ̃

µ̃+
√
9 + 4µ̃2

3 + µ̃2

)
, (C8)

λ2 =
1

QL

(
1 + µ̃

µ̃−
√
9 + 4µ̃2

3 + µ̃2

)
. (C9)

One can see that λ1,2 > 0, and at large µ̃ they have the
form:

λ1 ≈ 4

QL
, λ2 ≈ 3

4QLµ̃2
. (C10)

Therefore at large µ ≈ µ̃ there are two parameters in
the Laplace integral, one parameter is 1/QL, the other is
1/(QLµ̃2). To use Laplace’s method for the integral Eq.
(C1) we have to impose two conditions P ≫ QL, and
P ≫ QLµ̃2. These conditions lead to the two dimension-
less parameters for Laplace’s method

SNR ≫ 1 , (C11)

(γ2QL3P )−1 ≫ 1. (C12)

To calculate the integral Eq. (C2) in the leading order in
the parameters 1/SNR and (γ2QL3P ) we substitute the
first term of the expansion Eq. (C3) and the first term
in the brackets of the expansion Eq. (C4) to the integral
Eq. (C1). After straightforward calculation we obtain:

PX

[
Re
{
Y e−iγL|Y |2

}
, Im

{
Y e−iγL|Y |2

}]
×

∞∫
−∞

dη1dη2P [Y |X] ≈ PX

[
Y e−iγL|Y |2

]
. (C13)

To calculate corrections to the integral in parameters
1/SNR and γ2QL3P we should take terms which are pro-
portional to η and η3 in the product of expansions Eqs.
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(C3) and (C4). Formally the first correction to the inte-

gral should be of order of 1/
√
SNR and

√
γ2QL3P , but

it is zero due to the symmetry η → −η (the exponent
contains only even combination of η). Therefore up to
terms proportional to QL the result for the integral Eq.
(C1) has the form

∞∫
−∞

dxdyPX [x, y]P [Y |X] ≈ PX

[
Y e−iγL|Y |2

]
. (C14)
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