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Abstract.  The mathematical model of a dispersion-managed thu-
lium/holmium fibre laser is described; the results of numerical cal-
culations and their comparison with the experimental data are pre-
sented. Qualitative agreement of the results of the mathematical 
modelling with those of the experiment is obtained. Using the meth-
ods of mathematical modelling, the variation in the characteristics 
of the optical pulses due to the change in the average cavity disper-
sion is analysed. 

Keywords: fibre mode-locked lasers, dispersion management, non-
linear Schrödinger equation.

1. Introduction

Numerous practical applications require generation of high-
energy optical pulses at wavelengths shifted towards the mid-
dle of the near-IR region. Thulium/holmium lasers possess a 
wide gain band in the wavelength region between 1.65 and 
2.1 mm and, therefore, are used for generating short pulses 
tunable within a broad spectral band [1]. Usually in fibre 
lasers producing high-energy pulses the segments of the fibre 
with anomalous group velocity dispersion have a small length 
or even are absent in the cavity at all. However, when the 
wavelength of the generated radiation grows, it is very dif-
ficult to satisfy this requirement because of the limited avail-
ability of fibres with normal dispersion at the required 
wavelengths. Since the usual optical fibre possesses large 
anomalous dispersion and the wavelength 2 mm, the pulse 
propagation along it is subjected to soliton instabilities. 
Introduction of a fibre segment with negative dispersion into 
the laser cavity leads to limitation of the peak pulse power, 
because the spectral width of the pulse should be large to pro-
vide the oscillatory character of the chirp parameter. This 
spectral width of the pulse leads to splitting of the pulse spec-
trum and destruction of the pulse in the time domain [2]. To 
avoid these instabilities, in a thulium/holmium laser the dis-
persion management technique is used [2 – 12], i.e., the normal 
dispersion is provided by means of the chirped fibre Bragg 
grating [13], while the sign of the average cavity dispersion is 
changed by varying the passive fibre length.

The present paper reports the results of mathematical 
modelling of the thulium/holmium fibre laser [13]. Qualitative 
fitting of numerical and experimental data was performed 
that allowed improvement in the parameters used in the 
mathematical modelling of the considered fibre laser and ver-
ification of the obtained numerical results. In the paper we 
numerically study the dependence of the parameters of the 
obtained optical pulses on the fibre cavity length and, corre-
spondingly, on the value of the average dispersion, and carry 
out the appropriate analysis.

2. Setting of the problem  
and mathematical model

The scheme of a mode-locked fibre laser with a linear cavity 
consisting of the active and the passive fibres, the dispersion 
compensator [13] and the saturable absorber [14] is presented 
in Fig. 1. The gain is provided by using the active thulium/
holmium 1.2-m-long fibre with negative dispersion. The char-
acteristics of the fibre laser elements are presented in Table 1. 
The length of the passive fibre segment LPF  is 1 m. The pulse 
appears in the output passive fibre before the dispersion com-
pensator. The carrier wavelength of the laser is l0 = 1986 nm. 

The roundtrip time in such a system is calculated using the 
formula TR = n0L/c, where L = 2(LAF + LPF) is the total length 
of the cavity, LAF is the length of the active fibre, c is the 
velocity of light, and the refractive index in the core is n0 » 
1.5. The propagation of radiation in the active optical wave-
guide is described by the generalised nonlinear Schrödinger 
equation [1, 4, 15 – 18] with the input field A(t, z = 0) = Ain(t) 
(determined by the previous roundtrip of the cavity, except 
the first roundtrip, for which the initial field distribution is 
used):
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When modelling the pulse propagation through the active 
fibre in a mode-locked laser, one should account for the satu-
ration of gain and filtration. The effect of filtration saturation 
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Figure 1.  Scheme of a fibre laser.
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in the operator is usually described in the frequency domain 
using the Lorentz profile
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Here w0 = 2pc/l0 is the carrier frequency; WG = (2pc/l0
2)LG is 

the frequency of filtration. The gain saturation occurs with 
the growth of the pulse energy E = ò |A|2dt, where EsatG = 
PsatGTR.

The propagation of the pulse through the passive fibre is 
described by the standard generalised nonlinear Schrödinger 
equation:
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The nonlinear Schrödinger equation was solved using the 
symmetrised version of the split-step Fourier method. The 
number of temporal nodes used was 211, the number of spatial 
nodes was 1000. The approximate computational time for 
2000 roundtrips of the laser cavity amounted to 2 hours. The 
obtained regime was considered to be steady-state if the rela-
tive variation of the pulse energy e = |Ei – Ei + 1|/Ei did not 
exceed 10–3, and the relative variation in both the pulse width 
and the pulse power did not exceed 10–2 at least during 200 
roundtrips of the cavity. The white noise with the average 
power 0.2 W was taken as the initial distribution.

The role of the dispersion compensator in the proposed 
cavity is played by the chirped fibre Bragg grating, possessing 
the normal dispersion. To model the behaviour of the slow-
varying envelope of the electromagnetic field in the dispersion 
compensator the nonlinear Schrödinger equation was used:
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The saturable absorber was described by the simplified 
transfer function T (t) = 1 – q(t, Pin(t)), where Pin(t) = |Ain(t)|2, 
and the function q can be found from the equation
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Having solved this equation, we define q as a function of time 
and input field. The output field is described as follows: 
Aout = Rout Ain and Acav = (1 – Rout)Ain, where Ain is the field 
before the splitter, Aout is the part of the total field coupled 
out from the cavity and Acav is the part of the field that stays 
inside the cavity. 

3. Results

In the process of calculations the sign of the average cavity 
dispersion
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chirped fibre Bragg grating and the fibre segment, respec-
tively) was changed by varying the length of the passive 
fibre LPF.

For the best matching of the calculated results with the 
experimental data the deviation by ±10 % from the dispersion 
values b2

PFand B2
cr presented in Table 1 was allowed. The 

search for the best matching point was performed by taking 
into account the experimentally obtained autocorrelation 
functions for two regimes: the first one with the normal aver-
age cavity dispersion (the passive fibre length is 3.75 m) and 
the autocorrelation function width of 1.78 ps, and the second 
one with the anomalous average dispersion (the length of the 
passive fibre is 6.34 m) and the autocorrelation function 
width of 16.61 ps. All data are presented for the pulses at the 
output of the cavity after passing the segment of the 1-m-long 
output passive fibre.

Figure 2 shows the level curves of the autocorrelation 
function widths for the cavity with the length of the passive 
fibre 3.75 and 6.34 m. The point shows the crossing of two 
level curves, corresponding to the experimental widths of the 
autocorrelation functions.

Thus, the optimal values of the second-order dispersion of 
the passive fibre and the dispersion of the Bragg grating, pro-
viding the best matching of the experimental and numerical 
results, amounted to – 0.08 ps2 m–1 and 1 ps2, respectively.

For comparison Fig. 3 (left) presents the spectra of pulses, 
obtained in the experiment [curve ( 1 )] and using the numeri-
cal method [curve ( 2 )] for laser cavities with the length of pas-
sive fibre 2.28 m (Fig. 3a), 3.75 m (Fig. 3b) and 7.27 m 
(Fig. 3c). Also the spectrum of a Gaussian pulse is shown 
[curve ( 3 )], reconstructed from the characteristics (peak 
power, duration and chirp) of the pulse, obtained as a result 
of the numerical calculation. The cavity length LAF + LPF and 
the intracavity dispersion for each case are indicated in the 
figure. The spectra, presented in Figs 3a and b, correspond 
to the normal intracavity dispersion, whereas the spectra in 
Fig. 3c correspond to the anomalous one. The principal dif-

Table 1.  Values of the fibre laser parameters.

Element	 Parameter	 Value

Active fibre

	 Length LAF	 1.2 m
	 Second-order dispersion b2

AF	 –0.136 ps2 m–1

	 Third-order dispersion b3
AF	 0.000428 ps3 m–1

	 Nonlinear parameter g	 1.2 W–1 km–1

	 Gain bandwidth LG	 20 nm
	 Gain g0	 3.15 dB
	 Saturation power PsatG	 17 mW

Passive fibre
	 Second-order dispersion b2

PF	 –0.07323 ps2 m–1

	 Third-order dispersion b3
PF	 0.000428 ps3 m–1

	 Nonlinear parameter g	 1.2 W–1 km–1

Saturable absorber
	 Modulation depth q0	 10 %

	 Saturation energy Esat	 1 pJ
	 Recovery time tab	 1 ps

Dispersion compensator (chirped fibre Bragg grating)
	 Reflection coefficient	 30 %

	 Dispersion B2
cr	 1.07 ps2
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ference in spectral shape is seen between the regimes with nor-
mal and anomalous intracavity dispersion. 

In Fig. 3 (right) the pulse obtained as a result of calcula-
tions [curve ( 1 )] is compared with the Gaussian pulse [curve 

( 2 )]. It is seen that the calculated pulses are asymmetric and 
significantly differ in shape from the Gaussian pulse if the 
average dispersion is positive, whereas for the anomalous 
average cavity dispersion they agree well with the appropriate 
Gaussian pulse.

Despite the qualitative agreement of the results for the 
regimes with positive average dispersion, a significant dis-
crepancy is observed between the shapes of experimental 
spectra and those obtained by means of numerical modelling. 
This fact can be explained by the use of a rather narrow range 
of definition for the system parameters, which does not allow 
increasing the nonlinearity up to the values, at which it can 
essentially affect the formation of pulses. One more factor 
affecting the spectral shape of the pulse is the application of 
the standard generalised Schrödinger equation that does not 
take the dispersion of higher orders into account in the pro-
cess of numerical modelling of the pulse propagation in the 
cavity. However, the obtained qualitative agreement of the 
results allows the analysis of the dependence of the basic pulse 
characteristics on the average cavity dispersion based on the 
results of mathematical modelling with the use of the calcula-
tion parameters corrected above.

The laser cavity presented here is a dispersion-managed 
dissipative cavity (the losses amount to 70 % at the output of 
the chirped fibre Bragg grating). The mutual effect of these 
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Figure 2.  Level curves of the autocorrelation functions for cavities with 
the length of the passive fibre 3.75 m (dotted lines) and 6.34 m (solid 
lines).
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Figure 3.  Comparison of the spectra obtained in the experiment ( 1 ), using the numerical method ( 2 ), and the Gaussian spectrum reconstructed 
from the characteristics of the calculated pulse ( 3 ) (left); comparison of the calculated pulse shape ( 1 ) with that of the reconstructed Gaussian pulse 
( 2 ) (right).
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factors determines the shape of the pulse and its spectrum. 
For the oscillation regimes with normal average cavity disper-
sion the spectral shape is presumably determined by the pres-
ence of dissipation in the system. Both the experimental and 
the calculated spectra essentially differ from the reconstructed 
Gaussian one (see Fig. 3), although the experimental spectra 
possess a more pronounced rectangular shape. Note, that it is 
just the presence of dissipation in the systems with normal 
average dispersion that leads to the possibility of stable pulse 
generation in principle.

As the cavity losses grow, the range of stable oscillation 
broadens at the expense of the existence of stable regimes with 
greater positive average dispersion. These regimes are charac-
terised by the absence of zero-chirp point inside the cavity 
and by rectangular shape of the spectrum [19].

Next, we performed the numerical studies of the depen-
dence of the output pulse parameters on the cavity length. 
The variation of the average cavity dispersion was achieved at 
the expense of changing the length of the passive fibre. 
Figure  4 shows the dependence of the pulse energy on the cav-
ity length for the regimes with normal (dashed curve) and 
anomalous (solid curve) average dispersion. It is seen that 
when the cavity length is increased, the dependence of the 
pulse energy deviates from linear one in the region of small 
values of the average dispersion modulus (which corresponds 
to the cavity length within 10 – 12 m). The dip in the energy 
dependence is explained by the presence of the spectrum, 
broad compared to the Lorentz gain profile, which leads to 
the gain reduction. In the vicinity of zero average dispersion 
the stationary regimes are absent. 

In the inset in Fig. 4 the pulse spectral width versus the 
cavity length is presented. It is seen that when the spectral 
width is smaller than 10 nm, the linear dependence of energy 
on the cavity length is restored. Due to the spectral limitation 

of the normal dispersion regimes, the linear dependence of the 
energy occurs in the regimes with wider spectrum that in the 
case of the cavity with anomalous average dispersion. For the 
cavity length exceeding 19 m the termination of stable single-
pulse oscillation was observed. 

Let us consider how the sign of the average dispersion 
affects the generated pulse characteristics in dispersion-man-
aged optical cavities. The dependence of the autocorrelation 
function width on the normalised average dispersion is pre-
sented in Fig. 5. In the Figure the average dispersion is related 
to the dispersion modulation depth, defined as
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The dashed line corresponds to the regimes with normal aver-
age dispersion and the solid line corresponds to the anoma-
lous one. In the inset the character of the autocorrelation 
width dependence in the case of negative average cavity dis-
persion is shown in more detail. As seen from the plot, the 
autocorrelation function width of the optical pulse at the out-
put from the cavity with normal average dispersion is by an 
order of magnitude higher than in the cavity with anomalous 
average dispersion. Greater energy and smaller width of the 
optical pulse are fingerprints of nonlinear dynamics in the 
presented dispersion-managed laser with the cavity character-
ised by negative average dispersion. The negative sign of the 
average cavity dispersion also completely determines the pres-
ence of the zero-chirp point in the passive optical waveguide 
and the absence of such point in the cavities with positive 
average dispersion. In the cavity of the presented laser with 
positive average dispersion the pulse of minimal width is 
observed at the output point, since in the lead-off fibre 
(because of its small length) the pulse is only insignificantly 
narrowed. 

4. Conclusions

Numerical modelling of a thulium/holmium fibre lasers, 
described in Ref. [13], is carried out. The qualitative agree-
ment between the results of mathematical modelling and the 
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Figure 4.  Output pulse energy and the spectral width vs. the cavity 
length. The dashed curves correspond to the regimes with normal aver-
age dispersion, the solid curves to those with anomalous dispersion.
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experimental data is demonstrated, which allowed the study 
of the pulse characteristics as functions of cavity length varia-
tion. It is found that at small absolute values of the average 
dispersion the dependence of the pulse energy on the cavity 
length declines from linear one. The absence of stable single-
pulse oscillation regimes in the vicinity of the zero-average-
dispersion point was observed.
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