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The nonlinear Schrödinger equation (NLSE) is widely used in telecommunication applica-
tions, since it allows one to describe the propagation of pulses in an optical fiber. Recently 
some new approaches based on the nonlinear Fourier transform (NFT) have been actively 
explored to compensate for fiber nonlinearity and to exceed the limitations of nonlinearity-
imposed limits of linear transmission methods. Despite the fact that the numerical solution 
of NLSE is a general problem, nevertheless, the optical community has been focusing on 
this issue. Improving the accuracy of the NFT algorithms remains an urgent problem in 
optics. In particular, it is important to increase the approximation order of the methods, 
especially in problems where it is necessary to analyze the structure of complex wave-
forms. To correctly describe them and their spectral parameters, more accurate and fast 
numerical methods are needed.
We propose a novel general approach for constructing sixth-order (with respect to an in-
tegration step) finite-difference schemes for first-order linear differential systems. These 
schemes are based on the generalized Cayley transform and include exponential integra-
tors as a special case. If the system has a time-dependent skew-hermitian matrix then the 
schemes conserve the quadratic first integral automatically. Then we apply our method to 
solve the direct spectral problem for the Zakharov-Shabat system. New schemes with frac-
tional rational transition matrix allow the use of fast algorithms to solve the initial problem 
for a large number of values of the spectral parameter.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In quantum mechanics and optics, problems arise that are described by linear ordinary differential equations with vari-
able coefficients. The solutions of such equations can be written analytically only in exceptional cases. Therefore, to solve 
even linear ordinary differential equations, one has to use numerical methods, which are offered in a large number and 
variety (see, for example, fundamental books [1–3] and bibliography there).

Our work is also devoted to the construction of numerical methods for solving systems of linear ordinary differential 
equations with variable coefficients. The systems under consideration have features that require the construction of special-
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ized numerical methods with the ability to perform fast massive computations. The main system and the problem for which 
we are developing our methods is the direct spectral problem for the Zakharov-Shabat system (ZS).

The general interest in solving the direct spectral problem for the ZS system is based on the fact that it is the first 
step of the inverse scattering problem method for solving the nonlinear Schrödinger equation (NLSE) and its integrable 
modifications [4]. The NLSE arises in many physical situations. It describes the propagation of envelopes for slowly varying 
wave packets in nonlinear media [5]. Indeed, it has been derived in such diverse fields as deep water waves [6,7]; plasma 
physics [8]; magneto-static spin waves [9]; and so on.

The particular practical interest in the NLSE has arisen in nonlinear fiber optics, since this equation describes the propa-
gation of envelopes q(t, z) for light waves in optical fibers [10–12].

i
∂q

∂z
+ σ

2

∂2q

∂t2
+ |q|2q = 0, (1)

where the variable z is the distance along the optical fiber, t is a time variable; σ = −1 and σ = 1 corresponds to the 
normal and anomalous dispersion in the fiber, respectively.

As is well known, the NLSE has soliton solutions. Soliton solutions that decay sufficiently rapidly at infinity (called 
bright solitons) exist in optical fibers with anomalous dispersion and are described by the focusing NLSE equation with the 
attractive nonlinearity. Soliton solutions that have a nontrivial background (called dark solitons) exist in optical fibers with 
normal dispersion and are described by the defocusing NLSE with the repulsive nonlinearity [13,14].

The idea to use solitons for data transmission in optical fiber lines arose for the first time in [15]. After this work, the 
NLSE and its modifications were extremely intensively studied in relation to fiber telecommunication systems [16–19]. Later, 
the idea was put forward to use multisoliton pulses in fiber-optic data transmission lines, when information is modulated 
and restored in the so-called nonlinear Fourier domain [20–22]. Despite the fact that NLSE is an integrable system [23], its 
numerous studies were carried out by numerical methods. A classic overview of numerical methods for NLSE is given in 
[24]. The next step for the study of the direct spectral problem was made in the papers [25,26], which were devoted to the 
numerical determination of scattering data for the ZS system.

It should be emphasized that the ZS system appears in other optical applications [27]. In particular, the problem of 
scattering by Bragg gratings, which serve as the basis for optical filters in high-speed fiber data transmission lines, is 
reduced to the ZS system [28,29]. The linear Schrödinger equation for two-level quantum systems with a time-dependent 
Hamiltonian takes the form of the ZS system [30,31]. Moreover, the first example corresponds to the ZS system for the 
focusing NLSE, and the second example corresponds to the ZS system for the defocusing NLSE. In both cases, the ZS system 
has the skew-gradient form and preserves the quadratic integral for the real eigenvalues [32,33]. This integral is positively 
defined for the second case. In addition, the nonlinear Fourier transform is used to analyze coherent structures in dissipative 
systems and laser radiation [34,35].

At present, the main goal of the numerical solution for the direct spectral problem is to design the fast algorithms, which, 
apparently, were first proposed in [36,37]. The current state of the numerical methods and the prospects for the application 
of fast nonlinear Fourier transform for data transmission are given in [38–40]. The basic idea of [36,37] and subsequent 
works in this direction is to reduce the transition matrix or the matrix of the fundamental solution to a polynomial in the 
spectral parameter with matrix coefficients. Then the calculation of the spectral data for the continuous spectrum is reduced 
to the calculation of this polynomial for a large number of points of the continuous spectrum, and the calculation of the 
discrete spectrum is reduced to the calculation of the roots of the resulting polynomial. The advantage of this approach is 
the ability to use fast algorithms to compute polynomials [41,42].

For effective application of the nonlinear Fourier transform for data transmission in fiber lines, high-precision and fast 
methods are required to solve the direct spectral problem for the ZS system. At the moment, the authors are aware of several 
fourth-order schemes [43,44,32,45], which allow the use of fast algorithms for multipoint computation of polynomials and 
finding the roots. Moreover, the scheme [43] is applied on an irregular grid, the one in [44] is based on the Runge-Kutta 
method, which also requires the calculation of values within each elementary cell of the grid. Therefore, the above schemes 
require either interpolation within a unit cell or computation on a grid with a large step size. At the same time, a feature of 
the problem being solved is that the ZS system is specified in a tabular form on an equidistant grid. Numerical experiments 
in [43] showed unsatisfactory results when interpolating over several neighboring points. And only global interpolation gives 
satisfactory results. Our task is to construct schemes on an equidistant grid without using any interpolation. There are also 
schemes of the sixth [46,47] and the eighth order [48] for solving the general non-autonomous system. However, sixth-
order schemes violate the unitarity of the transition matrix and, as a result, do not preserve the quadratic integral. Eighth-
order schemes are constructed for expansion in Legendre polynomials and, therefore, require knowledge of the expansion 
coefficients. In [43], Richardson interpolation was used for the 4th order scheme from [47], which made it possible to build 
a fast 6th order algorithm.

In our work, we consider the linear system

d� = Q (t)�, (2)

dt
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where the matrix Q (t) depends on time t . Such systems arise in many optical and physical applications, as described above. 
The main attention will be paid to the direct spectral problem of the modified ZS system [49], sometimes referred to in the 
literature as ZS/AKNS or AKNS system, with the matrix

Q (t, ζ ) =
[−iζ q(t)

r(t) iζ

]
. (3)

For the NLSE (1), we need to put r = −σq∗ .
Our idea for constructing one-step methods

�n+1 = T �n, (4)

where �n = �(nτ ), consists of finding first the expansion of the transition matrix T into a Maclaurin series in terms of 
a small parameter, which is taken as the grid step size τ , with the required accuracy, and then consistently replacing the 
derivatives with difference analogs [32,33]. Using this expansion, it is possible to determine what order of the derivatives of 
the matrix Q (t) is necessary to construct a difference scheme of a given order of accuracy. By adding higher-order terms, 
one can represent the transition matrix in different forms. In particular, in exponential form, in the form of a product of 
exponentials, or a more general exponential expansion. Further, these functions can be approximated through rational func-
tions. This work is devoted to the construction of a rational approximation of the transition matrix. If the time-dependent 
matrix Q (t) is skew-Hermitian, then the system (2) conserves the quadratic first integral. Conservation of the quadratic 
integral is important for long-time numerical integration [3]. If the quadratic integral is positive definite, then the numerical 
solution will be stable in the corresponding norm. If the integral is not sign-definite, then its conservation law allows to con-
trol the computations. For the exact conservation of quadratic integrals by schemes, it is proposed to use an approximation 
in the form of a generalized Cayley transform.

Let’s formulate the main features of the direct spectral problem of the ZS system:

1. The matrix Q (t) of the system (2) is given on a uniform grid with a step size τ , so the problem arises of constructing 
difference schemes that use only the values of Q (t) at the grid nodes. If the values of Q (t) can be calculated at any 
point t , then it is reasonable to calculate them within the integration step. This is exactly what is done when using 
Runge-Kutta schemes. If exponential integrators based on the Magnus expansion are used, then to approximate the 
integrals in this expansion, quadrature formulas are used at the optimal nodes within the grid cell.

2. The matrix Q (t) is a polynomial in the complex parameter ζ and it is required to integrate the equation for a large 
number of values of ζ . Therefore, it becomes necessary to represent the product of transition matrices as a polynomial 
with matrix coefficients and use fast algorithms to calculate them for a large number of values. This dictates the choice 
of a special kind of transition matrices.

3. For real spectral parameters ζ the ZS system has the gradient form with the skew-Hermitian matrix therefore conserves 
the quadratic integral. Since the integration takes place over a large area, the scheme must conserve the quadratic 
invariant as well.

4. The solutions of the system for the spectral parameters ζ lying in the upper complex half-plane have exponentially 
increasing and decaying solutions, therefore the scheme must be A-stable and, according to the second Dahlquist barrier, 
this condition is satisfied only by one-step explicit schemes.

5. The ZS system is two-dimensional. This allows constructing schemes containing matrix exponentials and other matrix 
functions without significantly increasing computational costs.

The article is organized as follows. The section 2 contains the approach to constructing finite-difference schemes for 
first-order linear differential systems (2) using the generalized Cayley transform. In section 3, this approach is applied to 
the ZS system and a fast algorithm is constructed for computations. Numerical experiments for the ZS system are given in 
section 4.

2. Finite-difference schemes for first-order linear differential systems

Exponential difference schemes are based on the Magnus expansion [50,51]. The Magnus expansion contains integration 
over a time interval [52]; therefore, all schemes are based on the approximation of multiple integrals using cubature formu-
las on a set of nodes within an elementary subinterval. However, another option is also possible, in which the integrand is 
replaced by an expansion in a Taylor series, and the subsequent integration of this expansion is performed. If the derivatives 
from the Taylor series are approximated by difference analogs with suitable accuracy, then we obtain a difference scheme. 
For difference analogs, one can use the values of the system matrix Q (t) only for t , in which the matrix Q is given. This 
allows one to explicitly exclude interpolation within an elementary subinterval. This approach was used in [32,33] and will 
be applied in this work.

The Magnus expansion transforms into an exact exponential solution for a system with a constant matrix. However, 
calculating the matrix exponential requires significant computational resources for high-dimensional matrices [53,54]. 
3
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Therefore, the idea arose to use rational approximations for systems with constant coefficients [55]. Among rational ap-
proximations, the diagonal Padé approximation stands out [56]. Recently, the idea of using diagonal Padé approximation 
was applied to the linear Schrödinger equation with the time-dependent Hamiltonian [57,58].

The simplest approximation is the well-known Crank-Nicholson scheme. Many authors have noticed that the Crank-
Nicholson scheme has the form of the canonical Cayley transform [59,60]. The Crank-Nicholson scheme and the schemes 
based on the diagonal Padé approximation preserve the unitarity of the transition matrix, therefore they are used for sys-
tems with quadratic integrals [61,58]. A general approach to constructing conservative one-step difference schemes can be 
considered. In this approach, two objects are subject to the definition: the generalized Cayley transform, which is given 
by an appropriate polynomial F (z), and the matrix Z , which replaces the complex variable z in the generalized Cayley 
transform. Thus, schemes based on the Padé approximation and the canonical Cayley transform are embedded in this ap-
proach, since in these cases the polynomial F (z) is specified a priori. In the most general setting, we can assume that the 
polynomial F (z) has complex coefficients. However, calculations showed that such a generalization does not allow decreas-
ing the degrees of the polynomials in the spectral parameter. Therefore, we limited ourselves to polynomials F with real 
coefficients.

2.1. Exponential integrators

Let’s introduce a fundamental solution U (t, t0) of the system

d U (t, t0)

dt
= Q (t) U (t, t0), U (t0, t0) = I, (5)

where I is a unit matrix. If the matrix Q does not depend on time, then the fundamental solution is the exponential 
U (t, t0) = exp ((t − t0)Q ). Therefore, if Q depends on time, we can assume that the fundamental solution also has an 
exponential form. Indeed, in Magnus’s work [52] the asymptotic representation of the fundamental solution in exponential 
form was found:

U (t,0) = e�(t), �(t) =
∞∑

k=0

�k(t), (6)

where the first terms of the Magnus expansion have the form

�1(t) =
t∫

0

Q (t1)dt1, �2(t) = 1

2

t∫
0

dt1

t1∫
0

dt2 [Q (t1), Q (t2)] , (7)

�3(t) = 1

6

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3 ([Q (t1), [Q (t2), Q (t3)]] + [Q (t3), [Q (t2), Q (t1)]]) .

If we know how to calculate Q at points inside the interval at each step of size t , then it is reasonable to approximate 
the integrals by suitable cubature formulas. In a situation where the matrix Q is given on a uniform grid, various interpo-
lation methods can be used. Numerical experiments have shown the insufficiency of interpolation based on cubic splines 
and the efficiency of interpolation based on the Fourier transform [43]. However, this interpolation is essentially nonlocal. 
Our numerical experiments with interpolation of smooth analytical signals using the Fourier transform showed that such 
interpolation gives values that coincide with the analytical ones with the accuracy of machine representation of numbers. 
Additional research is required to understand how this interpolation works for realistic signals. Therefore, another method 
was proposed for constructing exponential integrators using the Magnus formula.

If the matrix Q (t) can be represented as a Taylor series with respect to a small parameter τ

Q (t + τ ) =
∞∑

k=0

τ k

k! Q (k)(t), Q (k)(t) = dk Q (t)

dtk
, (8)

then substitution of this series into the Magnus formula with integration from t − τ/2 to t + τ/2 gives an approximation 
of the fundamental solution U (t + τ/2, t − τ/2) with the required order of accuracy in the small parameter τ . We restrict 
ourselves to considering the approximation E(t + τ/2, t − τ/2) up to the sixth order in τ

U (t + τ/2, t − τ/2) = E(t + τ/2, t − τ/2) + O
(
τ 7) , (9)

which has the form

E(t + τ/2, t − τ/2) = eZ(t), Z(t) = τ Z1(t) + τ 3 Z3(t) + τ 5 Z5(t), (10)
4
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where Z2 = Z6 = 0 and the nonzero terms are

Z1 = Q , Z3 = 1

24
Q (2) + 1

12

[
Q (1), Q

]
, (11)

Z5 = 1

1920
Q (4) + 1

480

[
Q (3), Q

]
+ 1

480

[
Q (1), Q (2)

]
+ 1

720

[[
Q (2), Q

]
, Q

]
+ (12)

+ 1

240

[[
Q , Q (1)

]
, Q (1)

]
+ 1

720

[
Q 3, Q (1)

]
+ 1

240

[
Q Q (1) Q , Q

]
.

The expression Z(t) contains derivatives from the first to the fourth order. To obtain a consistent finite-difference approx-
imation, we express these derivatives on a uniform grid with a five-point stencil. We need the following central difference 
approximations of the derivatives, giving the maximum order of accuracy [62].

In the term Z5, it is sufficient to approximate the derivatives with the 2nd order:

Q (4)(t) = Q 2 − 4Q 1 + 6Q 0 − 4Q −1 + Q −2

τ 4
+ O (τ 2), (13)

Q (3)(t) = Q 2 − 2Q 1 + 2Q −1 − Q −2

2τ 3
+ O (τ 2), (14)

Q (2)(t) = Q 1 − 2Q 0 + Q −1

τ 2
+ O (τ 2), (15)

Q (1)(t) = Q 1 − Q −1

2τ
+ O (τ 2), Q n = Q (t + nτ ). (16)

For Q (2) and Q (1) in the term Z3 it is sufficient to use the 4th order approximation with a five-point stencil:

Q (2)(t) = −Q 2 + 16Q 1 − 30Q 0 + 16Q −1 − Q −2

12τ 2
+ O (τ 4), (17)

Q (1)(t) = −Q 2 + 8Q 1 − 8Q −1 + Q −2

12τ
+ O (τ 4). (18)

These finite-difference approximations can also be used for Q (2) and Q (1) in the term Z5, which is equivalent to using the 
Lagrange interpolation polynomial of 4th degree in τ to approximate Q (t + τ ) with a five-point stencil.

Formulas for the expansion of �(t) up to the 8th order in τ are given in [51]. In this case, 18 nested commutators 
are added, which additionally contain Q (6) and Q (5) . To obtain a consistent 8th order finite-difference scheme, at least a 
7-point stencil must be used.

If the matrix Q is skew-Hermitian Q † = −Q , then the matrix U (t, t0) is unitary U−1(t, t0) ≡ U (t0, t) = U †(t, t0). Ob-
viously, all approximations of Z(t) will also be skew-Hermitian and the finite-difference scheme based on the expansion 
will preserve the quadratic integral. In particular, if Q (t) = −iH(t), where H(t) is a Hermitian matrix, then we get the 
Schrödinger equation with the Hamiltonian H(t) depending on the time t .

2.2. Formulas for matrices of the second order

Calculation of the matrix exponential exp(Z) in the general case is a rather complicated computational problem [53]. 
However, for matrices of the 2nd and 3rd orders, the calculation of the matrix exponentials can be done analytically. Here 
we should mention that in practical optical transmission applications, we have two polarizations, meaning that we deal 
with the Manakov equation. The latter corresponds to the 3 × 3 ZS-type system the methods developed by the authors can 
be generalized to the 3 × 3 case [63–65]. In this subsection, we consider the case of second-order matrices, leaving the case 
of 3 × 3 matrices for future work.

It is convenient to expand complex matrices of the second order in terms of the Pauli matrices

σ0 =
[

1 0
0 1

]
≡ I, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (19)

Let us consider a matrix Z , that has the following expansion in terms of the Pauli matrices σk :

Z =
[

Z11 Z12
Z21 −Z11

]
=

[
z3 z1 − iz2

z1 + iz2 −z3

]
= z1σ1 + z2σ2 + z3σ3, zk ∈C. (20)

This means that the matrix Z is traceless: tr(Z) = 0. The characteristic equation of this matrix has the form

det(Z − λσ0) = λ2 − Z 2
11 − Z12 Z21 = λ2 − z2

1 − z2
2 − z2

3 = 0, (21)

from which we obtain an expression for the eigenvalues λ± = ±
√

z2
1 + z2

2 + z2
3, and by the Hamilton-Cayley theorem it 

follows that Z satisfies its characteristic equation
5
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Z 2 = (z2
1 + z2

2 + z2
3)σ0 (22)

The spectral decomposition of the matrix Z = X	X−1 has the form

X = Z + λσ3, 	 = λσ3, X−1 = (2λ(z3 + λ))−1 X, λ =
√

z2
1 + z2

2 + z2
3. (23)

Let’s take the analytic function F (λ), which is given by its series. Then the function F of the matrix Z takes the form

F (Z) = F (Xλσ3 X−1) = X (Fc(λ)σ0 + Fs(λ)σ3) X−1 = Fc(λ)σ0 + Fs(λ)

λ
Z , (24)

where Fc(λ) and Fs(λ) are even and odd parts of the function F (λ):

Fc(λ) = F (λ) + F (−λ)

2
, Fs(λ) = F (λ) − F (−λ)

2
.

In particular, for F (λ) = eλ we have a compact formula for the exponential

e Z = c(λ)σ0 + s(λ)

λ
Z , (25)

where

c(λ) = cosh(λ), s(λ) = sinh(λ). (26)

For a rational function F (λ)/G(λ) we obtain in a similar way the formula

F (Z)

G(Z)
= F (λ)G(−λ) + F (−λ)G(λ)

2G(λ)G(−λ)
σ0 + 1

λ

F (λ)G(−λ) − F (−λ)G(λ)

2G(λ)G(−λ)
Z . (27)

The generalized Cayley transform has the form F (z)/F (−z). Therefore, substituting G(λ) = F (−λ) into the formula (27), 
we obtain the compact formula for the generalized Cayley transform of a second-order matrix Z from (20)

F (Z)

F (−Z)
= 1

F (λ)F (−λ)

(
Fc(λ)σ0 + Fs(λ)

λ
Z

)2

= c(λ)σ0 + s(λ)

λ
Z , (28)

where λ is the eigenvalue (23) and the coefficients are

c(λ) = F 2(λ) + F 2(−λ)

2F (λ)F (−λ)
, s(λ) = F 2(λ) − F 2(−λ)

2F (λ)F (−λ)
, (29)

and they satisfy the identity

c2(λ) = 1 + s2(λ). (30)

Obviously, c(λ) and s(λ)/λ are even functions of λ and can be written as functions of λ2. Also, if F (λ) is a polynomial, 
then the degrees of the numerator and denominator for c(λ) are the same, and the degree of the numerator of s(λ) is less 
than the degree of the numerator c(λ).

2.3. Diagonal Padé approximants

For problems of the scattering theory, it is typical that the matrix Q (t, ζ ) also depends on the spectral parameter ζ
and it is necessary to find a solution of the equation (2) for a large number of values of the parameters ζ to determine 
scattering data. Therefore it was proposed [36,37] to represent the transition matrix Tn = U (tn + τ/2, tn − τ/2) at each step 
tn as a rational function

Tn = Sn(w)

dn(w)
, (31)

where the matrix Sn and the function dn are polynomials of the parameterization w = w(ζ ). As a parameterization one can 
choose a function that transforms the space of the spectral parameter ζ into a unit disc |w| ≤ 1.

In particular, if the spectral parameters ζ lie in the upper half-plane, as in the ZS problem, a linear fractional trans-
formation that maps ζ = ξ + iη, η ≥ 0 into the unit disc |w| ≤ 1 such that the point iβ , β > 0 goes to the point w = α, 
−1 < α < 1 inside the disc and the point ζ = 0 goes to the point w = 1, has the form

w(ζ ) = ih − ζ
, h = 1 + α

β, w(iβ) = α, w(0) = 1. (32)

ih + ζ 1 − α

6
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The inverse transformation for (32) has the form

ζ(w) = ih
1 − w

1 + w
. (33)

This inverse transformation maps the points of the unit circle w = exp(iθ), θ ∈R to points of the real axis ζ = ξ , ξ ∈R by 
the formula

ξ = h tan

(
θ

2

)
. (34)

Then, following (31), the fundamental solution on the computational domain [−τ/2, τ M + τ/2] will be approximated by 
the product

U (τ M + τ/2,−τ/2) ≈ T (w) =
M∏

n=0

Tn(w). (35)

The matrix T (w) is a matrix polynomial with respect to w . Its coefficients can be found using fast algorithms for multiplying 
polynomials [41,42]. To compute the matrix T (w) for different values of the free variable w one can also use fast algorithms 
based on nonequispaced fast Fourier transform (NFFT) [66].

To obtain a rational transition matrix R , one can use the Padé approximation for the matrix exponential

e Z = R(Z) + O (τ k), R(z) = F (z)

G(z)
, (36)

where Z is a matrix depending on τ , F (z) and G(z) are polynomials, and the order of approximation k must be no less than 
the order with which exp(Z) approximates the fundamental solution U . Using the adjugate matrix adj(G(Z)), the transition 
matrix will take the form (31):

Tn = adj(G(Zn))F (Zn)

det(G(Zn))
. (37)

For small dimensions 2 and 3, the inverse matrix G−1(Zn) and/or the adjugate matrix adj(G(Zn)) can be calculated analyti-
cally.

For equations with constant coefficients, rational approximations have been discussed for a long time. Moreover, the 
form of the polynomials must be consistent with the spectrum of the constant matrix Q . It is especially important for 
the stiff systems [55]. For the Schrödinger equation with the time-dependent Hamiltonian H(t), difference schemes were 
constructed based on the diagonal Padé approximation of the exponential. This ensures that the transition matrix is unitary. 
A general form of the diagonal Padé approximation of the exponential is given in [67]

ez = En(z) + O (z2n+1), En(z) = 1 F1(−n,−2n, z)

1 F1(−n,−2n,−z)
, (38)

where 1 F1(−n, −2n, z) is a confluent hypergeometric function that is reduced to a polynomial of degree n. The first 4 
diagonal Pade approximations have the form

E1(z) = 1 + 1
2 z

1 − 1
2 z

, (39)

E2(z) = 1 + 1
2 z + 1

12 z2

1 − 1
2 z + 1

12 z2
, (40)

E3(z) = 1 + 1
2 z + 1

10 z2 + 1
120 z3

1 − 1
2 z + 1

10 z2 − 1
120 z3

, (41)

E4(z) = 1 + 1
2 z + 3

28 z2 + 1
84 z3 + 1

1680 z4

1 − 1
2 z + 3

28 z2 − 1
84 z3 + 1

1680 z4
. (42)

For the 6th order exponential scheme (9), one need to use the diagonal Padé approximation, starting from the 3rd 
degree:

ez = E3(z) + O (z7), (43)

where E3(z) is given in (41), or more accurate approximations En for n ≥ 3 can be used.
For matrices Q of the larger size, the polynomials Fn(z) and Fn(−z) can be factorized to represent a one-step difference 

scheme as a multi-step implicit scheme [57,58].
7
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2.4. Generalized Cayley transform

The Schrödinger equation and the ZS system for the real spectral parameter ζ = ξ ∈ R preserve the quadratic integral. 
Therefore, we will construct transition matrices that also preserve this invariant.

For the approximate transition matrix T to be unitary, it is sufficient that it has the form of the generalized Cayley 
transform

T (Z) = F (Z)

F (−Z)
, F (z) =

∞∑
n=0

fnzn, F (z) =
∞∑

n=0

f̄nzn (44)

where F (z) is an analytic function of the complex argument z such that

F (z) 	≡ F (−z). (45)

For any real y the generalized Cayley transform w = F (iy)/F (−iy) converts the imaginary axis z = iy to the unit circle 
because |w| = 1. Further, we will consider only functions F with real coefficients. Obviously, the exponential exp(x) is an 
example of the generalized Cayley transform for F (x) = exp(x/2).

We will search the transition matrix T in the form of the generalized Cayley transform up to 6th order in τ . To do this, 
it suffices to consider the generalized Cayley transform in the form of a sixth-degree polynomial

F (Z) = a0 I + a1 Z + a2 Z 2 + a3 Z 3 + a4 Z 4 + a5 Z 5 + a6 Z 6, (46)

and the expansion for Z

Z = τ Z1 + τ 2 Z2 + τ 3 Z3 + τ 4 Z4 + τ 5 Z5 + τ 6 Z6, (47)

which starts with a first-order term in τ . The expansion of the fundamental solution U (t + τ/2, t − τ/2) in τ has the form 
I + τ Q (t) in the main order, therefore a0 and a1 are not equal to zero. Without loss of generality, we can assume that 
a0 = 1. Normalizing Z , we can set a1 = 1/2:

T (Z) = I + 1
2 Z + a2 Z 2 + a3 Z 3 + a4 Z 4 + a5 Z 5 + a6 Z 6

I − 1
2 Z + a2 Z 2 − a3 Z 3 + a4 Z 4 − a5 Z 5 + a6 Z 6

. (48)

For a2 = a3 = a4 = a5 = a6 we obtain exactly the canonical Cayley transform

E1(Z) = I + 1
2 Z

I − 1
2 Z

. (49)

Formulas for Z from (47) in the 6th order general scheme (48) take the form: Z2 = Z4 = Z6 = 0,

Z1 = Q , Z3 = 1

24
Q (2) + 1

12

[
Q (1), Q

]
+ k1 Q 3, (50)

Z5 = 1

1920
Q (4) + 1

480

[
Q (3), Q

]
+ 1

480

[
Q (1), Q (2)

]
+ 1

240

[[
Q , Q (1)

]
, Q (1)

]
(51)

+k2

[[
Q (2), Q

]
, Q

]
+ k3 Q Q (2) Q + k4

[
Q 3, Q (1)

]
+ 1

240

[
Q Q (1) Q , Q

]
+ k5 Q 5,

where

k1 = a2 − 2a3 − 1

12
, k2 = 1

24

(
k1 + 1

30

)
, k3 = k1

8
, k4 = − 1

12

(
k1 − 1

60

)
(52)

k5 = 1

120
− a2

4
+ a3

2
+ 2a2

2 − 10a2a3 + 12a2
3 + a4 − 2a5. (53)

Another notation of k5 through k1 has the form

k5 = 2k1

(
k1 − a3 + 1

24

)
− 1

6

(
a3 − 1

120

)
+ a4 − 2a5. (54)

These formulas do not contain the coefficient a6, since, as in the exponential expansion, the matrix Z has only the odd 
powers of τ . There are four arbitrary coefficients: a2, a3, a4, a6. Moreover a4 and a5 are included only in the coefficient at 
Q 5 in the form of a linear combination a4 − 2a5.

For the third order diagonal Padé approximation (43), i.e. for a2 = 1/10, a3 = 1/120, a4 = a5 = 0, the matrix Z coincides 
with the matrix (11)-(12) for the exponential scheme (10). Thus, the general schemes (48) contain the third order Padé 
approximation for the 6th order exponential scheme (10).
8
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Arbitrariness in the choice of coefficients ak , k = 2, 3, 4, 5, can be used in several ways.
First, to zero out the maximum number of terms in Z , we have to set k1 = 0, then two terms k1 and k3 are canceled. 

Putting a4 = a5 = 0, to decrease the degree of the polynomial F (z), we will zero out the coefficient k5 for a3 = 1/120. As a 
result, we get a2 = 1/10. Therefore, this case coincides with the 3rd order Padé approximation (41).

Second, to obtain the minimum degree of a polynomial, we put a2 = a3 = a4 = a5 = 0. Then we get the canonical Cayley 
transform (49), and the matrix Z will be determined by

k1 = − 1

12
, k2 = − 1

480
, k3 = − 1

96
, k4 = k5 = 1

120
. (55)

Let us consider the question: how can we choose the coefficients ak so that the polynomials F (z) and F (−z) have a 
common root that can be canceled in a rational expression (48)? For two polynomials F (z) and F (−z) have a common 
root, it is enough that their resultant is equal to zero. Calculations for polynomials of the 5th degree show that, under the 
condition

a2 = 2a3, a4 = 2a5, (56)

the maximum reduction occurs up to polynomials of the first degree, i.e. to the canonical Cayley transform (49), and the 
matrix Z is determined by the coefficients (55). Another case of reduction is to a polynomial of the 3rd degree, but this 
does not zero the coefficient k5, so a polynomial of a higher degree is obtained than for the canonical Cayley transform (49).

2.5. Conditions of applicability for schemes

The transition matrix T is close to the unit matrix I for sufficiently small τ . The approximate transition matrix in 
exponential form (10) satisfies this property for any τ . If the matrix Z has a simple structure and λk is a set of eigenvalues, 
then the polynomials F (λk) and F (−λk) from (44) have to be far from their zeros. For Padé approximation of an exponential 
function, zeros and poles are well studied [67,68]. For small orders of the generalized Padé transform (48), the zeros of the 
numerator and denominator can be found numerically. If the root with the minimum modulus of the polynomial F (z) is 
equal to z∗ , then the condition of applicability of the difference scheme can be written in the form

|z∗| > |λk| ∀k. (57)

3. Zakharov-Shabat system

In this section, we will consider a modified ZS system with the matrix (3). For different functions q(t) and r(t), the 
modified ZS system corresponds to the direct spectral problem for some nonlinear equations. A list of such equations is 
given in [49,36,37]. In addition, the ZS system is used to describe the integrable generalizations of the NLSE, which can be 
used to describe the pulse propagation in optical fibers [4]. Using the general theory from the previous section, we construct 
three sixth-order difference schemes for this system. The schemes based on the diagonal Padé approximation and the Cayley 
transform allow the use of fast algorithms to solve the direct spectral problem for a large number of values of the spectral 
parameter ζ .

3.1. Demo example

We will consider the Crank-Nicholson scheme for the system (2) with the matrix (3) to demonstrate the use of the fast 
algorithm. This scheme, like several other schemes, was considered in [36,37]. We chose it because the Crank-Nicholson 
scheme is a prototype for schemes based on the diagonal Padé approximation and the generalized Cayley transform, and 
the formulas for it have the most compact form.

The transition matrix T for the exponential scheme of the 2nd order of accuracy has the form

T = e Z = cosh(λ)σ0 + sinh(λ)

λ
Z , Z = τ Q =

[
0 τq
τ r 0

]
− iτζ

[
1 0
0 −1

]
, λ = τ

√
qr − ζ 2. (58)

The matrix Q has the inverse time dimension, therefore the matrix Z is dimensionless and it is necessary to use dimen-
sionless combinations q̃ = τq, r̃ = τ r, and z = τζ . The scheme (58) was proposed for the ZS system in [25].

First-order diagonal Padé approximation E1(z) approximates the exponent exp(z) with the 2nd order of accuracy and 
has the form (39), so the corresponding transition matrix T is written as

T (z) = S(z)

d(z)
, S(z) =

(
1 + 1

4
q̃r̃ − 1

4
z2

)[
1 0
0 1

]
+

[
0 q̃
r̃ 0

]
− iz

[
1 0
0 −1

]
, d(z) = 1 − 1

4
q̃r̃ + 1

4
z2. (59)

Further within Section 3, to simplify the notation, we will remove the wave over q and r.
9
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Let us perform a one-to-one conformal linear fractional transformation of the unit disc |w| ≤ 1 into the upper half-plane 
Re z ≥ 0

z(w) = ih
1 − w

1 + w
, (60)

where h > 0 is a parameter (32). Substituting (60) into (59) we get expressions for S and d in terms of w

P2(w) = S(w)

d(w)
, S(w) = S0(w)

[
1 0
0 1

]
+ S12(w)

[
0 q
r 0

]
+ S3(w)

[
1 0
0 −1

]
, (61)

where

d(w) = (4 − h2 − qr)w2 + (8 + 2h2 − 2qr)w + (4 − h2 − qr), (62)

S0(w) = (4 + h2 + qr)w2 + (8 − 2h2 + 2qr)w + (4 + h2 + qr), (63)

S12(w) = 4(w + 1)2, S3(w) = 4h(1 − w2). (64)

Now all calculations of matrix polynomials S(w) and d(w) will be performed for |w| ≤ 1.

3.2. Exponential and rational schemes of 6th order of accuracy

Substituting the matrix Q from (3) into general formulas (11)-(12), we obtain the matrix Z for the exponential scheme 
(10) in the compact form (25):

Z11 = −Z22 = 1

180

(
rq(1) − qr(1)

)
z2 − i

(
1 − rq(2) + qr(2)

360
+ q(1)r(1)

60

)
z+ (65)

+ 1

180
(15 − qr)

(
rq(1) − qr(1)

)
+ 1

480

(
rq(3) − qr(3) + q(1)r(2) − r(1)q(2)

)
,

Z12 = iq(1)

90
z3 − q(2)

180
z2 + i

(
q(1)

6
+ q(3)

240
− qrq(1)

90

)
z+ (66)

+q + q
(
rq(2) − qr(2)

)
360

+
(
qr(1) − rq(1)

)
q(1)

120
+ q(2)

24
+ q(4)

1920
,

Z21 = − ir(1)

90
z3 − r(2)

180
z2 − i

(
r(1)

6
+ r(3)

240
− qrr(1)

90

)
z+ (67)

+r + r
(
qr(2) − rq(2)

)
360

+
(
rq(1) − qr(1)

)
r(1)

120
+ r(2)

24
+ r(4)

1920
.

Sixth-order rational approximations are constructed using this expression for Z and general formulas for the Padé ap-
proximation (38). The transition matrix T = En(Z) has the form of (28)

T = En(Z) = cn(λ)σ0 + sn(λ)

λ
Z (68)

and for n = 3, 4 the coefficients cn(λ) and sn(λ) are

c3(λ) = 1 + 9
20 λ2 + 11

600 λ4 + 1
14400λ6

1 − 1
20 λ2 + 1

600 λ4 − 1
14400λ6

,
s3(λ)

λ
= 1 + 7

60λ2 + 1
600λ4

1 − 1
20λ2 + 1

600λ4 − 1
14400λ6

, (69)

c4(λ) = 1 + 13
28 λ2 + 289

11760λ4 + 19
70560λ6 + 1

2822400λ8

1 − 1
28 λ2 + 3

3920λ4 − 1
70560λ6 + 1

2822400λ8
, (70)

s4(λ)

λ
= 1 + 11

84λ2 + 37
11760λ4 + 1

70560λ6

1 − 1 λ2 + 3 λ4 − 1 λ6 + 1 λ8
. (71)
28 3920 70560 2822400

10
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3.3. Scheme for the canonical Cayley transform

The transition matrix T has the form of (68) for n = 1. The matrix Z of the 6th order scheme for the canonical Cayley 
transform (49) has the form

Z11 = −Z22 = − i

120
z5 + i

60
(qr − 5)z3 − 1

80

(
qr(1) − rq(1)

)
z2 (72)

− i

480

(
4 q2r2 − 40 qr − 3 qr(2) + 8 q(1)r(1) − 3 rq(2) + 480

)
z

+ 1

480

(
6 q2rr(1) − 6 qq(1)r2 − 40 qr(1) − r(3)q + 40 q(1)r + q(1)r(2) − r(1)q(2) + q(3)r

)
,

Z12 = q

120
z4 + i

40
q(1) z3 +

(
q

12
− q(2)

480
− q2r

60

)
z2 + i

(
1

6
q(1) − 1

40
qrq(1) + 1

240
q(3)

)
z (73)

− (q(1))2r

120
+ q(1)r(1)q

120
− qrq(2)

240
− q2r

12
+ q3r2

120
+ q(4)

1920
+ q(2)

24
+ q − q2r(2)

160
,

Z21 = r

120
z4 − i

40
r(1) z3 +

(
r

12
− r(2)

480
− qr2

60

)
z2 − i

(
1

6
r(1) − 1

40
qrr(1) + 1

240
r(3)

)
z (74)

− (r(1))2q

120
+ q(1)r(1)r

120
− qrr(2)

240
− r2q

12
+ r3q2

120
+ r(4)

1920
+ r(2)

24
+ r − r2q(2)

160
.

The functions c1(λ) and s1(λ) are calculated by the formulas

c1(λ) = 1 + 1
4 λ2

1 − 1
4 λ2

,
s1(λ)

λ
= 1

1 − 1
4λ2

. (75)

4. Numerical experiments

Let us consider numerical experiments for the constructed schemes using the example of the direct spectral problem for 
the ZS system. Let q = q(t, z) be a slow-varying complex optical field envelope propagating along an ideally lossless and 
noiseless fiber. The evolution of the pulse q is described by the standard NLSE (1).

The Nonlinear Fourier Transform allows to transform any signal q(t), which decays rapidly for t → ±∞, into nonlinear 
Fourier spectrum. It is defined by the solution of the ZS problem

d�(t)

dt
= Q (t)�(t), �(t) =

[
ψ1(t)
ψ2(t)

]
, Q (t) =

[ −iζ q(t)
−σq∗(t) iζ

]
, (76)

where �(t) is a complex vector function of a real argument t , ζ ∈C is a spectral parameter, q(t) = q(t, z0) for any fixed z0.
Under the assumption that q(t) decays rapidly when t → ±∞, the specific solutions (Jost functions) for ZS problem (76)

can be derived as

� =
[
ψ1
ψ2

]
=

[
e−iζ t

0

]
[1 + o(1)], t → −∞, (77)

and

� =
[
φ1
φ2

]
=

[
0

eiζ t

]
[1 + o(1)], t → ∞. (78)

Then we obtain the Jost scattering coefficients a(ξ) and b(ξ) as follows:

a(ξ) = lim
t→∞ ψ1(t, ξ) eiξt, b(ξ) = lim

t→∞ ψ2(t, ξ) e−iξt . (79)

The functions a(ξ) and b(ξ) can be extended to the upper half-plane ξ → ζ , where ζ is a complex number with the positive 
imaginary part [49]. The spectral data of ZS problem (76) are determined by a(ζ ) and b(ζ ) in the following way:

(1) the continuous spectrum is determined by the reflection coefficient r(ξ) = b(ξ)/a(ξ), ξ ∈R;
(2) in the case of σ = 1, the discrete spectrum {ζk}, k = 0, K − 1 is defined by K zeros of a(ζ ) = 0, and corresponding 

phase coefficients are defined as

r(ζk) = b(ζ )

a′(ζ )

∣∣∣∣ , where a′(ζ ) = da(ζ )

dζ
;

ζ=ζk

11
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The ZS system (76) conserves the quadratic invariant H = |ψ1|2 +σ |ψ2|2 for real spectral parameters ζ = ξ . In particular,

H(ξ) = |a(ξ)|2 + σ |b(ξ)|2 = 1. (80)

In addition, the continuous spectrum energy

Ec = − 1

π

∞∫
−∞

ln |a(ξ)|2dξ (81)

also conserves. The details of the conservative properties of the ZS system can be found in [32,33].

4.1. Numerical algorithm

Summing up, we solve a linear system of the form (76) with the matrix Q (t) linearly dependent on the complex 
function q(t). The numerical implementation of the continuous function q(t) is a discrete function qn = q(tn), which is 
defined at the integer nodes tn of the uniform grid with the step τ . Since we are considering a finite time interval, we 
will solve the problem on the interval [−L, L] with the total number of points equal to M + 1. In this case, the grid step is 
τ = 2L/M and tn = −L + τn, where n = 0, ..., M .

We replace the original system (76) on each subinterval (tn − τ/2, tn + τ/2) with an approximate system with constant 
coefficients

�(tn + τ/2) = Tn�(tn − τ/2), (82)

where Tn is a transition matrix from the layer n − 1
2 to the layer n + 1

2 .
The spectral data are finally defined by

a(ζ ) = ψ1(L − τ/2, ζ ) eiζ(L−τ/2), b(ζ ) = ψ2(L − τ/2, ζ ) e−iζ(L−τ/2). (83)

To compute the transition matrix Tn = exp(Z) (25), we need to find Pauli coefficients z1, z2, z3 (20) of the decomposition 
of the matrix Z using Pauli matrices (19). The Pauli coefficients z1, z2, z3 are polynomials of a variable z = τζ . To optimize 
the calculations we compute coefficients of these polynomials for each grid node tn at the preliminary stage. This procedure 
allows us to speed up the calculations since we will not need to compute the same coefficients for each value of the spectral 
parameter ζ . For a large number of spectral parameters, it gives a significant advantage. At the next stage, the problem (82)
is solved for each value of the spectral parameters.

4.2. Schemes details

Here we consider the 6th order exponential scheme ES6 with the transition matrix Tn = exp(Z) (25), where the matrix 
Z is defined by (65)–(67). Hyperbolic sine and cosine for the exponential scheme are calculated directly.

We compare ES6 with two 6th order schemes ES6_Pade3 and ES6_Pade4 based on the diagonal Padé approximations of 
the 3rd and 4th order. The transition matrix Tn is defined by the general formula (68) for n = 3 and 4. In particular, the 
formula (41) is used for ES6_Pade3 and the formula (42) is for ES6_Pade4. The matrix Z is defined by the same formulas 
(65)–(67). The corresponding coefficients c(λ) and s(λ) are computed by (69) for ES6_Pade3 and (70)-(71) for ES6_Pade4.

We also consider the 6th order scheme ES6_Cayley based on the Cayley transform with the transition matrix Tn (68)
for n = 1 (39), where the matrix Z is defined by (72)–(74) and the approximation (75) is used to find the corresponding 
coefficients c(λ) and s(λ).

The fast variants of the schemes (FES6_Pade3 and FES6_Pade4) were implemented based on the FNFT software li-
brary [69]. We used NFFT3 library [66] to compute continuous spectrum by these schemes. The fast variant of the scheme 
ES6_Cayley turned out to be very inaccurate, so we do not present it in the figures. Optimal values of the parameter h (32)
were chosen empirically as h = 11 for the FES6_Pade3 and h = 15 for the FES6_Pade4. But we should note that there are 
maximal critical values for these parameters (h = 11.65 and h = 15.57, correspondingly) when the schemes still work. For 
such parameters, the schemes demonstrate an exponential decrease in error for large step sizes τ but accumulate a lot of 
computational errors for small step sizes.

If we omit the term with Z5 in formula (10), then we obtain an exponential scheme of the 4th order. The numerical 
results for the exponential 4th order scheme ES4 can be found in the recent papers [32,33,45].

We compared the aforementioned exponential 6th order schemes with the CF[6]
4 scheme [43,47]. This is a commutator-

free quasi-Magnus (CFQM) exponential integrator with complex coefficients. Because of complex coefficients this scheme 
does not conserve the quadratic invariant. For the same reason it can not be made fast using the splitting method [70]. The 
CF[6]

4 scheme requires interpolation in two additional nodes for each subinterval. A sufficient result is given by interpolation 
based on the Fourier transform [43].

We have applied the interpolation procedure to our schemes to provide a correct comparison at the grids with the same 
number of nodes. The CF[6] scheme has shown almost the same accuracy as the ES6 scheme, but the running time of the 
4
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CF[6]
4 is longer. Despite the fact that the matrices, composed the transition matrix in the CF[6]

4 , are much simpler, than the 
ones in the ES6, the calculations of four matrix exponentials in the CF[6]

4 requires more time, then the computing the one 
matrix exponential in the ES6. The numerical experiments have also confirmed that the CF[6]

4 scheme does not conserve the 
quadratic invariant. Here we only present the graphs of the schemes without interpolation.

In [43] the fast sixth order scheme FCF_RE[4]
2 is also presented. This scheme was constructed by integrating Richardson 

extrapolation into the fast fourth-order scheme FCF[4]
2 . The initial CF[4]

2 scheme is a CQFM exponential integrator consisting 
of two exponentials and requiring interpolation in two additional nodes per subinterval. The CF[4]

2 scheme conserves the 
quadratic invariant, but its fast variant FCF[4]

2 does not, as well as the FCF_RE[4]
2 . We do not consider the FCF_RE[4]

2 in the 
current paper since we believe that Richardson extrapolation is an improvement that can be applied to other schemes as 
well. The application of Richardson extrapolation to the exponential schemes and their subsequent comparison, in particular 
with the FCF_RE[4]

2 , is undoubted of interest and will be done in our future works.
We did not provide here an estimate of the number of numerical operations, since it is similar to the estimate from [43]. 

Since the number of operations for calculating the coefficients of each individual transition matrix is much less than the 
computation time for the large final matrix polynomial, the number of operations is mainly determined by the degree of 
the individual polynomial defining a separate transition matrix. The only significant difference is the need to calculate the 
denominator for the transition matrix. If the FNFT library itself computes a matrix polynomial with 2-by-2 matrices, then 
we also add the computation of the usual scalar polynomial.

4.3. Model signal and formulas for errors

For numerical experiments we used a conventional model signal in the form of a chirped hyperbolic secant q(t) =
A[sech(t)]1+iC with the following parameters: A = 5.2, C = 4 for both anomalous and normal dispersion. The detailed 
analytical expressions of the spectral data for this type of potentials can be found in [32,33].

To find the numerical errors of calculating the continuous spectrum energy Ec (81), the quadratic invariant H(ξ) (80), 
the phase coefficients r(ζk), and the scattering coefficients a(ζk), b(ζk) at the eigenvalues ζk we use the formula

err[φ]= |φcomp − φexact |
φ0

, φ0 =
{

φexact, if |φexact |>1

1,otherwise,
(84)

where φ can represent Ec , H(ξ), r(ζk), a(ζk) or b(ζk).
For the continuous spectrum we calculate the root mean squared error

RM S E[φ] =

√√√√√ 1

N

N∑
j=1

|φcomp(ξ j) − φexact(ξ j)|2
|φ0(ξ j)|2 , (85)

φ0 =
{

φexact(ξ j), if |φexact(ξ j)| > 1

1, otherwise,

where φ can represent a(ξ), b(ξ), r(ξ) or H(ξ). Here we assume the spectral parameter ξ ∈ [−20, 20] with the total number 
of points N that equal to the number of points M of the signal discretization.

4.4. Numerical results

All calculations were performed on a single core of the Intel® CoreTM i5-9600K processor with a frequency of 4.6 GHz. 
All algorithms were implemented using C++ language and compiled by Intel® C++ Compiler 19.1.

Figs. 1 and 2 present the continuous spectrum errors calculated using the schemes under consideration for the anoma-
lous and normal dispersion, respectively. The best accuracy is shown by the schemes ES6 and ES6_Pade4. ES6_Pade3 is less 
accurate in calculating the coefficient a(ξ). The worst result is obtained by the ES6_Cayley. The fast schemes demonstrate 
the accuracy that is close to one of the initial schemes. Figs. 1 and 2 also show the numerical errors for the continuous 
spectrum energy Ec (81). The accuracy of the fast schemes in calculating Ec is worse, then the one of the conventional 
schemes. For normal dispersion the fast schemes are more accurate in computing Ec .

The efficiency of the schemes is compared in Figs. 3 and 4, where the continuous spectrum errors with respect to the 
running time are presented for the anomalous and normal dispersion, respectively. Among the conventional schemes the 
best result was obtained for the scheme with the fourth-order Padé approximation ES6_Pade4. The least efficient is the 
ES6_Cayley scheme. The fast schemes outperform the conventional ones for a large number of nodes. It is explained by the 
asymptotic complexity of the fast algorithms. The FES6_Pade3 has a smaller degree of the polynomial used for the transition 
matrix representation, so it works faster than the FES6_Pade4. But the FES6_Pade3 is less efficient in calculating a(ξ) due to 
lack of accuracy.
13



Fig. 1. Continuous spectrum errors in the case of anomalous dispersion σ = 1.

Fig. 2. Continuous spectrum errors in the case of normal dispersion σ = −1.

The conservation properties of the schemes are considered in Figs. 5 and 6. The quadratic invariant H(ξ) is defined by 
(80). All the conventional schemes demonstrate good conservation of the quadratic invariant.

Fig. 5 presents the root mean squared error (85) of H(ξ) with respect to the number of points M of the signal discretiza-
tion. For anomalous dispersion, the fast schemes are close to the conventional ones starting from M = 212. The FES6_Pade4 
is slightly better than the FES6_Pade3. For normal dispersion, the fast schemes show worse results, and in this case, the 
FES6_Pade3 works better than the FES6_Pade4.

Fig. 6 shows the error (84) of calculating H(ξ) with respect to the spectral parameter ξ for M = 212. In the case of 
anomalous dispersion the quadratic invariant H(ξ) equally conserves for all schemes considered here. In the case of normal 
dispersion the fast algorithms increase the error about one order of magnitude in the middle of the spectral interval and up 
to fourth order in the edges. For normal dispersion, an error of all the schemes increases sufficiently in the middle of the 
spectral interval due to the subtraction of large modulo quantities.

The discrete spectrum errors are presented in Fig. 7. Here we did not use any numerical algorithm for finding eigenvalues 
ζk . The coefficients a(ζk), b(ζk), and r(ζk) were computed for the analytically known eigenvalues [32,33]. The review of 
the approaches for finding the eigenvalues can be found in [39,43,71]. Fig. 7 demonstrates the results calculated for the 
S. Medvedev, I. Chekhovskoy, I. Vaseva et al. Journal of Computational Physics 448 (2022) 110764
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Fig. 3. Continuous spectrum errors depending on the execution time trade-off in the case of anomalous dispersion σ = 1.

Fig. 4. Continuous spectrum errors depending on the execution time trade-off in the case of normal dispersion σ = −1.

Fig. 5. Invariant conservation error for anomalous dispersion σ = 1 (a) and normal dispersion σ = −1 (b).
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Fig. 6. Invariant conservation error for anomalous dispersion σ = 1 (a) and normal dispersion σ = −1 (b). (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. 7. Discrete spectrum errors for the maximum eigenvalue ζ0.

maximum eigenvalue ζ0. The coefficients a(ζ0) and b(ζ0) of the discrete spectrum are computed with almost the same 
accuracy for all the schemes. But for the derivative a′(ζ0) and the phase coefficient r0, the best result is obtained by the 
ES6_Pade3 and the worst one by the ES6_Cayley.

4.5. Computation of phase coefficients

There are well-known problems with the computation of the coefficient b(ζk). We used the bi-directional algorithm [72]
to find it. The algorithm is based on using both boundary conditions (77) and (78) to calculate the coefficient b(ζk) of the 
discrete spectrum:

�(t, ζk) = �(t, ζk)b(ζk). (86)

To find the phase coefficients r(ζk) we need to know the derivative a′(ζ ) at the point ζ = ζk

da

dζ
= dψ1

dζ
eiζ(L−τ/2) + i(L − τ/2)a(ζ ). (87)

From (82) we get
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d

dζ
�n+ 1

2
= T ′�n− 1

2
+ T

d

dζ
�n− 1

2
, (88)

where the initial value is defined from (77)

d

dζ
�(−L − τ/2, ζ ) =

( −i(−L − τ/2)ψ1(−L − τ/2, ζ )

0

)
(89)

and the derivative T ′ with respect to the spectral parameter ζ has the form

T ′ = c′σ0 +
(

s(λ)

λ

)′
Z + s(λ)

λ
Z ′, (90)

where

c′ = dc(λ)

dλ

z1z′
1 + z2z′

2 + z3z′
3

λ
,

(
s(λ)

λ

)′
=

(
ds(λ)

dλ
− s(λ)

λ

)
z1z′

1 + z2z′
2 + z3z′

3

λ2
. (91)

The derivatives dck/dλ and dsk/dλ for Padé approximations Ek(Z) are easy to find.

5. Conclusion

Families of schemes of the sixth order are constructed for a system of linear differential equations of the first order with 
a matrix depending on time and spectral parameter. Such schemes are supposed to be used in the numerical solution of 
the direct spectral problem for integrable vector nonlinear Schrödinger equations; therefore, the main attention was paid 
to schemes that allow the use of fast algorithms when solving the system for a large number of spectral parameter values. 
In particular, the proposed schemes are applied to solve the direct spectral problem for the ZS system. In our opinion, 
the constructed schemes will be useful for more accurate realistic calculations in the construction of telecommunication 
data transmission systems based on NLSE soliton solutions. On the other hand, the proposed schemes of the sixth order of 
accuracy are on the verge of computational consistency, because the schemes of the next order of accuracy require a large 
number of points for approximating the derivatives and contain a significantly larger number of terms.
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