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Nonlinear Fourier transform for analysis of optical spectral combs
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The nonlinear Fourier transform (NFT) is used to characterize the optical combs in the Lugiato-Lefever
equation with both anomalous and normal dispersion. We demonstrate that the NFT signal processing technique
can simplify analysis of the formation of dissipative dark solitons and regimes exploiting modulation instability
for a generation of coherent structures, by approximating the comb with several discrete eigenvalues, providing
a platform for the analytical description of dissipative coherent structures.
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Optical spectral comb technology enables a range of ex-
isting and emerging applications (see [1–7] and references
therein). Due to their chip-scale size and potential for in-
tegration, microresonator frequency combs are attractive for
the generation of equally spaced, coherent (phase-locked)
spectral lines, which is of particular interest for superchannel
based optical communications. Multiterabit per second coher-
ent transmission has recently been demonstrated using both
dissipative solitons and dark pulses in microresonators [8,9].
The optical comb technology is based on the nonlinear science
underlying the building of coherent optical structures that
ensure phase locking of spectral modes in the resonator.

Localized coherent structures and patterns formed from
noise or unstable homogeneous states occur in a wide range of
applications in physics and biology. Despite a great variety of
these applications, they often have similar underlying mathe-
matical models that offer a generic platform for new methods
of analysis of localized temporal or spatial nonlinear waves.
In this Letter, we demonstrate applications of the nonlinear
science method, i.e., inverse scattering transform (IST), also
known as the nonlinear Fourier transform (NFT), to the char-
acterization of optical combs in several practically important
configurations.

The master model governing the average evolution of the
envelope of the optical field in a nonlinear fiber resonator or
microresonator (see, for more details, [1–7,10,11] and refer-
ences therein) reads

i
∂�

∂T
− β

2

∂2�

∂τ 2
+ |�|2� = (−i + ζ0)� + i f . (1)

Here, �(T, τ ) is a slowly varying field amplitude, T is a
normalized time corresponding to the cavity round trips, τ is
a dimensionless longitudinal coordinate related to the angu-
lar characteristic inside the microresonator (or the local time
characteristic in the case of a fiber resonator), ζ0 is the nor-
malized laser detuning between the pump laser frequency and
the cold-cavity resonance frequency, and f is the normalized
pump field amplitude; β = ∓1 corresponds to, respectively,
focusing or defocusing cases (anomalous or normal dispersion

in the context of fiber-optic applications). Equation (1) is a
mean-field model, widely known as the Lugiato-Lefever equa-
tion (LLE) [12], and was originally introduced in the context
of plasma physics in [13] and first derived in the temporal
domain in [14]. The left-hand side of Eq. (1) (assuming that
the right-hand side is zero) presents the nonlinear Schrödinger
equation (NLSE) that is integrable by IST [15,16].

The IST (NFT) method in application to NLSE is well
documented and details can be found, for instance, in [15–18];
therefore, here we only briefly remind the reader of the key
facts that will be used below. We limit IST (NFT) consider-
ation by fields �(T, τ ) decaying at τ → ±∞ for all T . The
NLSE solutions �(T, τ ) are linked to the spectrum of a linear
operator—the Zakharov-Shabat spectral problem (ZSSP) for
potential �(T, τ ) and a spectral parameter λ = ξ + iη, as
follows:

∂u

∂τ
= −i λ u + �(T, τ ) v,

∂v

∂τ
= β�∗(T, τ ) u + i λ v. (2)

For β = −1, the eigenvalue problem is non-Hermitian
(ZSSP1), and for β = 1, the operator is Hermitian (ZSSP2).
Any solution of the NLSE �(T, τ ) with β = −1 can be pre-
sented through the corresponding nonlinear spectrum of the
ZSSP1 that, in general, includes (i) a continuous spectrum that
is defined on the real axis of the complex plane λ = ξ by the
complex function r(ξ ), and (ii) a discrete spectrum that is de-
scribed by 4 × N real parameters (the set of complex-valued
eigenvalues {λn} having a positive imaginary part together
with the complex-valued norming constants {rn}). The dis-
crete eigenvalues correspond to a soliton component of the
field �(T, τ ), with N being the total number of solitons.
For the field �(T, τ ) that consists of a set of well-separated
solitons, each eigenvalue λn specifies the soliton parame-
ters: amplitude 2Im(λn), frequency −2Re(λn), position Tn =
ln[|rn|/(2Imλn)]/(2Imλn), and phase ϕn = − arg(irn).

For the case β = −1, the field energy can be presented as
a sum of continuous (dispersive waves) and discrete (solitons)
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spectra of ZSSP1,
∫ ∞

−∞
|�(T, τ )|2dτ =

N∑
n=1

4ηn + 1

π

∫ ∞

−∞
ln[1 + |r(ξ )|2]dξ,

(3)

where the left side of the equality corresponds to the energy
calculated in the temporal domain Et (T ), while the right side
includes a contribution of the discrete spectrum energy Ed (T )
and the continuous spectrum Ec(T ).

The initial idea (e.g., presented in [19–22]) behind using
IST (NFT) beyond the traditional integrable systems was to
exploit the fact that for some nonintegrable (e.g., dissipative)
models, the Hamiltonian part of these equations is NLSE,
and, thus, one can expect that the IST (NFT) might still be
a useful tool for analysis of the whole (non-Hamiltonian)
systems. The term NFT stresses the analogy with the tra-
ditional Fourier transform that is ubiquitous in science and
engineering. Fourier transform might be useful in simplify-
ing the description of complex objects by presenting them
via spectral harmonics. It was shown in [19,21,22] that in
a similar manner, IST (NFT) can be employed not only for
solving integrable equations, but also for the characterization
of localized coherent structures in dissipative systems in the
anomalous dispersion regime. Note that in [23], NFT with
periodic boundary conditions was applied for analysis of static
(output) optical comb profiles in the LLE model. However, in
the case of periodic NFT, localized structures have been pre-
sented by a large number of discrete eigenvalues, which does
not allow one to reduce the number of the effective degrees of
freedom compared to conventional Fourier transform.

In this Letter, we demonstrate additional features and
different applications of NFT compared to the initial
idea [19–21]. We advance this emerging signal processing
technique by introducing the following applications of NFT
to the characterization of the dynamics of coherent structures
during the generation of optical combs: (i) We apply NFT
based on the Zakharov-Shabat spectral problem with β = −1
to the nonlinear system with β = 1, to stress that we do
not use the spectral problem for solving the equation, but
for processing of the signal. This is, evidently, a dramatic
departure from the traditional IST, where the sign of β must
be the same for the NLSE and ZSSP used for its integration.
(ii) We demonstrate how NFT can be used in the case of
pulsed pumping waves. (iii) We characterize, in terms of the
NFT spectrum, the generation of an optical comb through
modulation instability-induced oscillations when detuning is
switched to ensure a shift from an unstable cw background to
stable one. (iv) We demonstrate that a steady-state dissipative
dark soliton can be well approximated analytically by the ex-
pression for N-soliton solutions of NLSE with a small number
of parameters.

A typical solution of Eq. (1) includes a cw background
�0(T ) and a solitonic part �1(T, τ ). Evolution of the cw
background �0(T ) is given by

i
∂�0

∂T
+ |�0|2�0 = (−i + ζ0)�0 + i f . (4)

There are well-known solutions of (4) in the form of a con-
stant cw background that can be found by solving Eq. (4)

with ∂�0
∂T = 0, yielding an algebraic equation on the station-

ary background I0 = |�0|2: I3
0 − 2ζ0I2

0 + (1 + ζ 2
0 )I0 − f 2 =

0. There are three real roots, when the condition f 2
− � f 2 �

f 2
+ is satisfied, where

f 2
± = 2

27

[
ζ0

(
ζ 2

0 + 9
) ±

√(
ζ 2

0 − 3
)3]

,

and one real root otherwise. When ζ0 <
√

3, only one real root
exists [11].

When localized structures that define the comb have a
timescale much less than the round trip, it is possible to sepa-
rate the dynamics of the stable background field with nonzero
boundary conditions (in τ ) from the evolution of the localized
in time (vanishing boundary conditions) soliton content. This
is possible when, at large |τ |, localized structures do not affect
the cw background. Considering the solution of the master
model (1) as a sum of the uniform (in τ ) background �0 that
depends only on T and the soliton (localized in τ ) component
�1, we can separate the evolution in T of �0 governed by
Eq. (4), and the dynamics of the field �1:

i
∂�1

∂T
− β

2

∂2�1

∂τ 2
+ |�1|2�1 = R[�0, �1]. (5)

Here, the perturbative term R describing deviations of Eq. (5)
from the integrable NLSE has a form

R= (−i+ζ0)�1−2|�0|2�1 − 2�0|�1|2 − �2
0�∗

1 − �∗
0 �2

1 .

FIG. 1. Dissipative dark soliton on the stable cw background:
(a) evolution with T of the intensity, |�(T, τ )|2, (b) the spectral
power density |�(T = 12, ω)|2, (c) intensity of the field without
background, |�1(T, τ )|2, (d) the nonlinear discrete spectrum at T =
12, (e) the field reconstructed from the discrete spectrum only,
|� (DS)

1 (T, τ )|2, (f) the blue line shows the evolution with T of the
fraction of energy in the discrete spectrum, Ed (T )/Et (T ); the red
line shows the relative integral L2-norm of the difference between
the field �1 and the field �

(DS)
1 reconstructed from the nonlinear dis-

crete spectrum. Here, �(T = 0, τ ) = 2 − 1.8 exp[−(τ/3.1)2], β =
1, ζ0 = 6, f 2 = 8.5.
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FIG. 2. Formation of the comb through the modulation instabil-
ity with switched detuning: (a) full field with background, |�(T, τ )|2,
(b) comb spectral power density |�(T = 12, ω)|2, (c) |�1(T, τ )|2,
(d) dynamics of the nonlinear spectrum with T shown in the complex
plane λ = ξ + iη: the discrete spectrum (upper part) and the loga-
rithm of |r(ξ )|2 for the continuous spectrum (contour plot), (e) the
field reconstructed from the discrete spectrum only, |� (DS)

1 (T, τ )|2,
(f) the blue line shows the evolution with T of Ed (T )/Et (T ); the red
line shows the relative integral L2-norm of the difference between the
field �1 and the field �

(DS)
1 reconstructed from the nonlinear discrete

spectrum. Here, ζ0 = 2 for T < 5 and ζ0 = 8.7666 for T � 5. Also,
β = −1, f 2 = 3, �(T = 0, τ ) = 1.8 exp(−2τ 2) cos(0.3 + 5τ ).

The proposed separation of the equations to the cw and
solitonic parts only works when the background is stable.
However, we will also show below how it can be used in the
case of the unstable cw under the condition that the initial
perturbation is localized in τ and the detuning parameter is
switched from unstable to stable background regimes before
the developing oscillations reach boundaries.

The Zakharov-Shabat problem (2) for the potential �1

has been solved numerically by a hybrid method that in-
cludes computing discrete eigenvalues using phase jump
tracking [24] and their subsequent refinement based on the
Newton method with the exponential scheme [25]. Solitons
are the key element of the optical comb, providing for the
phase locking of the spectral modes. Therefore, our NFT
analysis here is focused on the solitons.

Figure 1 depicts the formation of a complex dissipative
dark soliton in Eq. (1) with β = 1 from the initial condition
�(T = 0, τ ) = 2 − 1.8 exp[−(τ/3.1)2] [26] in the case of the
stable background I0 = 4. Figure 1 shows that ZSSP1 (with
β = −1) can be employed in the case of normal dispersion
(β = 1) and that the dynamics of the field can be reconstructed
with a reasonable accuracy from the discrete spectrum only.
Figure 1(f) presents evolution with T of a fraction of the
energy, Ed (T )/Et (T ), contained in the discrete spectrum (blue
line) and a relative error in terms of the L2-norm of the re-
construction of the total field using only discrete eigenvalues

FIG. 3. Comb generation with a pulsed pumping wave [ f (τ ) =
1.9 sech(τ/20)] generated from the Gaussian pulse 3 exp(−τ 2/2):
(a) dynamics of intensity, |�(T, τ )|2, (b) formed comb shown at
T = 10 |�(T = 10, τ )|2, (c) the field |� (DS)(τ, T )|2 reconstructed
from the discrete spectrum shown in (e), (d) the spectral power
density of the comb, |�(T = 12, ω)|2, (e) dynamics of the nonlin-
ear spectrum shown as the evolution with T in the complex plane
λ = ξ + iη: the discrete spectrum (upper part) and the logarithm of
|r(ξ )|2 for the continuous spectrum (contour plot), (f) the blue line
shows the evolution with T of Ed (T )/Et (T ); the red line shows the
relative integral L2-norm of the difference between the field � and
� (DS) reconstructed only from the nonlinear discrete spectrum. Here,
ζ0 = 4, β = −1.

(red line). It is seen that the dark soliton can be recovered
with a good accuracy only from the discrete eigenvalues of
the ZSSP1.

Next, we apply NFT characterization to the generation of
an optical comb through the modulation instability of the
unstable cw background induced by localized oscillations
(β = −1). Figure 2 illustrates formation of the optical comb
when ζ0 = 2 (unstable cw) for T < 5 and ζ0 = 8.7666 (stable
cw) for T � 5. We consider the localized oscillating pertur-
bations at T = 0 �(0, τ ) = 1.8 exp(−2τ 2) cos(0.3 + 5τ ) that

FIG. 4. Dissipative dark soliton: β = 1, ζ0 = 2.5, f 2 = 2.61,
�(T = 0, τ ) = 1.7 − exp[−(τ/4.4721)2]. (a) |�(τ, T )|2, (b) the
spectral power density |�(T = 30, ω)|2.
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FIG. 5. Analytical approximation of dissipative dark soliton,
with the same parameters as in Fig. 4. (a) Dynamics in T of the
nonlinear spectrum in the complex plane λ = ξ + iη: the discrete
spectrum (upper part) and the logarithm of |r(ξ )|2 for the continuous
spectrum (contour plot), (b) solution of Eq. (5) |�1(T, τ )|2, (c) the
field |� (DS)

1 (T, τ )|2 reconstructed from the discrete spectrum using
the L2-optimization procedure, (d) relative integral L2-norm of the
difference between the field �1 and the field �

(DS)
1 reconstructed

from the nonlinear discrete spectrum using the general procedure
(purple line) and using the L2-optimization procedure (red line).

induce instability of the background. However, before oscilla-
tions reach the boundaries in the LLE model, the detuning ζ0

is switched to the stable cw background condition. As it is
seen in Fig. 2, in the considered example, two discrete eigen-
values allow us to reconstruct the total field with relatively
good accuracy.

The proposed NFT analysis is well suited to optical comb
generation [27] with a pulsed pumping wave. In this case,
there is no need to subtract the cw background as the boundary
conditions are decaying at large |τ |. Consider the pumping
wave in the form of well-separated pulses of the form of
f (τ ) = 1.9 sech(τ/20), similar to the example studied in [27].
Figure 3 presents NFT characterization of a comb formation
from the initial Gaussian pulse, 3 exp(−τ 2/2). The steady-
state field [Fig. 3(b)] has well-pronounced tails, leading to a
discrete spectrum with one detached eigenvalue and a set of
equally spaced eigenvalues with lower imaginary parts.

Finally, considering, as an example, a single dissipa-
tive dark soliton comb (different from the one discussed
in Fig. 1) studied in [26], we demonstrate that the NFT
approach can provide an analytical description for such sta-
tionary coherent structures in the nonintegrable models, as
shown in Fig. 4. First, the optical field in the temporal domain
was restored from the two evaluated numerically discrete
eigenvalues shown in Fig. 5(c) using the Darboux method.
The analytical two-soliton solution of NLSE corresponding to

two discrete eigenvalues has the well-known exact form [17]

� (2)(τ ) = −2 〈A(τ )| [I + M(τ )∗ M(τ )]−1 |B(τ )〉 . (6)

Here, I is the 2 × 2 identity matrix, Mk, j (τ ) = ir j
e−i(λ∗

k −λ j )τ

λ∗
k−λ j

,
and the two-component vectors A(τ ) and B(τ ) are defined
as 〈A(τ )| = 〈r1eiλ1τ , r2eiλ1τ |, 〈B(τ )| = 〈eiλ1τ , eiλ1τ | . For the
example considered in Fig. 5, r1 = 2.8661 + 7.4679i, r2 =
3.2519 + 2.3445i, λ1 = 1.4085i, and λ2 = 0.6438i. The po-
tential � (DS) reconstructed from two eigenvalues provides an
analytical approximation of the dissipative dark soliton given
in Fig. 4(a): �(T, τ ) = �0(T, τ ) + � (DS)(T, τ ).

Though a straightforward reconstruction of the potential
�1(T, τ ) from the discrete spectrum of ZSSP (2) allows
an approximation of the original field with good accuracy,
it has disadvantages in the form of asymmetry (the origi-
nal field is symmetric in τ ). The reconstruction is enhanced
by additional signal processing, the discussion of which is
beyond the scope of this work. Here, we apply the Levenberg-
Marquardt algorithm to minimize the L2-norm of the deviation
between the original and reconstructed fields. This approach
makes it possible to obtain a symmetric field and to halve
the L2-error [Fig. 5(d)]. The optimal parameters read r1 =
2.0767 + 5.198i, r2 = 1.9037 + 0.84997i, λ1 = 1.2797i, and
λ2 = 0.47663i for T = 30. We would like to stress that the
analytical formula (6) well approximates the dissipative dark
soliton in the nonintegral system here, as seen in Fig. 5.
Though, in this case, it is not necessary to solve the direct
ZSSP, the computed discrete spectrum provides a useful initial
approximation for the optimization method. We also note that
the number of discrete eigenvalues in this approach can be
selected from the requirements of the reconstruction accuracy.

In conclusion, we demonstrated that the NFT method based
on the Zakharov-Shabat spectral problem used in the IST for
NLSE with anomalous dispersion can be applied to the char-
acterization of optical combs in systems with both anomalous
and normal dispersion, and with constant or pulsed pumping
wave. We have shown that the NFT technique can be used to
analyze comb generation by the modulation instability of the
plane wave when the detuning parameter is switched from an
initially unstable background to the stable one. In the consid-
ered examples, the NFT approach allowed us to present the
generated optical comb by several discrete eigenvalues. We
demonstrated that NFT can provide an analytical description
for some classes of dissipative dark solitons in situations when
most of the energy is contained in the discrete eigenvalues.
Note the interesting link to the use of a breather solution of
NLSE for comb generation in Ref. [28].
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