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We propose a finite-difference algorithm for solving the initial
problem for the Zakharov-Shabat system. This method has the
fourth order of accuracy and represents a generalization of the
second-order Boffetta-Osborne scheme. Our method permits
the Zakharov-Shabat spectral problem to be solved more effec-
tively for continuous and discrete spectra. © 2019 Optical
Society of America

https://doi.org/10.1364/OL.44.002264

The solution of the direct problem for the Zakharov-Shabat
problem (ZSP) is the first step in the inverse scattering trans-
form (IST) for solving the nonlinear Schrödinger equation
(NLSE) [1]. The numerical implementation of the IST has
gained great importance and attracted special attention since
Hasegawa and Tappert [2] proposed to use soliton solutions
as a bit of information for fiber optic data transmission.

The direct scattering problem for the NLSE is gaining grow-
ing attention in the field of NFT-based telecommunications [3]
and various applications of fiber optics [4], such as spectral data
search. To calculate such data, it is necessary to solve the initial
value problem with respect to the time variable for the Zakharov-
Shabat system. Therefore, a lot of effort was made to find effective
numerical methods to solve this problem. An overview of the
methods used can be found in [3,5,6]. Currently, one of the most
effective methods for solving the ZSP is the Boffetta-Osborne
(BO) method [7], which has the second order of approximation
in the time variable. Comparisons for this method with different
other methods were carried out in [6,8].

Beside the approximation accuracy, it is necessary to have an
algorithm which has a minimal computational time to get a
discrete set of spectral parameters with sufficient accuracy. This
approach is implemented in the fast algorithm (FNFT) for solv-
ing the direct ZSP using the modified Ablowitz-Ladik method,
the Crank-Nicolson scheme [3,9], multistep backward differ-
entiation formula (BDF) and multistep implicit Adams meth-
ods [10]. The BOmethod does not allow a direct application of
the fast algorithm, but the fast method can be applied to the
split form of the BO method transition matrix [11]. In this
Letter, we will focus on building the method of the fourth order
of accuracy on a uniform grid. For a non-uniform grid, a
fourth-order scheme [12] was applied in [13]. In perspective,

the exponential approximation can be applied to our scheme;
therefore, we can use the fast algorithm.

We write the Zakharov-Shabat system in a matrix form
d
dt

Ψ�t� � Q�t�Ψ�t�, (1)

where Ψ�t� is a complex vector function of the real argument t,
Q�t� is a complex matrix

Ψ�t� �
�
ψ1�t�
ψ2�t�

�
, Q�t� �

�
−iζ q�t, z0�

−σq��t , z0� iζ

�
,

where q � q�t , z� is a complex-valued optical field governing
by the NLSE

iqz �
σ

2
qtt � jqj2q,

σ � �1 for anomalous and normal dispersion, z0 plays the role
of a parameter and will not be used further. The asterisk means
the complex conjugation.

Consider the Jost initial conditions�
ψ1

ψ2

�
�

�
e−iζt

0

�
�1� o�1�	, t → −∞, (2)

which define the Jost solutions for real ζ � ξ. The Jost scatter-
ing coefficients a�ξ� and b�ξ� are obtained as limits

a�ξ� � lim
t→∞

ψ1�t, ξ�eiξt , b�ξ� � lim
t→∞

ψ2�t, ξ�e−iξt : (3)

The function a�ξ� can be extended to the upper half-plane
ξ → ζ, where ζ is a complex number with the positive imagi-
nary part η � Im ζ > 0. The spectral data are determined by
a�ζ� and b�ζ� in the following way:

(1) the zeros of a�ζ� � 0 define the discrete spectrum fζkg,
k � 1,…,K of ZSP (1) and phase coefficients

rk �
b�ζ�
a 0�ζ�

����
ζ�ζk

, where a 0�ζ� � da�ζ�
dζ

;

(2) the continuous spectrum is determined by the reflection
coefficient

r�ξ� � b�ξ�
a�ξ� , ξ ∈ R:

The matrix Q�t� in the system (1) becomes the skew-
Hermitian (Q� � −QT ) when the spectral parameter ζ � ξ

2264 Vol. 44, No. 9 / 1 May 2019 / Optics Letters Letter

0146-9592/19/092264-04 Journal © 2019 Optical Society of America

https://orcid.org/0000-0001-7138-8573
https://orcid.org/0000-0001-7138-8573
https://orcid.org/0000-0001-7138-8573
https://orcid.org/0000-0001-8134-0178
https://orcid.org/0000-0001-8134-0178
https://orcid.org/0000-0001-8134-0178
mailto:medvedev@ict.nsc.ru
mailto:medvedev@ict.nsc.ru
mailto:medvedev@ict.nsc.ru
https://doi.org/10.1364/OL.44.002264
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.44.002264&amp;domain=pdf&amp;date_stamp=2019-04-23


is real and σ � 1. Therefore, the system (1) preserves the
integral

d
d t

�jψ1�t�j2 � jψ2�t�j2� � 0: (4)

Taking into account the boundary conditions (2), we have

jψ1�t�j2 � jψ2�t�j2 � 1: (5)

In addition, the trace formula is valid [14]

Cn � −
1

π

Z
∞

−∞
�2iξ�n ln ja�ξ�j2dξ

�
XK
k�1

1

�n� 1� ��2iζ
�
k �n�1 − �2iζk�n�1	, (6)

which connects the NLSE integrals Cn with the coefficient a�ξ�
and the discrete spectrum ζk. This formula with n � 0 is called
the Parseval nonlinear equality and is used to verify the numeri-
cal calculations and the consistency of the continuous and dis-
crete spectra found.

We solve the system (1). The matrix Q�t� linearly depends
on the complex function q�t�, which is given in the whole
nodes of the uniform grid tn � −L� τn with a step τ on the
interval �−L, L	. If the total number of points is 2M � 1, then
the grid step is τ � L∕M . Since the matrix Q�t� is specified
only on the grid, Boffetta and Osborne suggested replacing
the original system on the interval �tn − τ

2 , tn � τ
2	 with an

approximate system with constant coefficients [7]

d
d t

Ψ�t� � Q�tn�Ψ�t�, Qn � Q�tn�, (7)

which is easily solved on the selected interval and gives the tran-
sition operator T n from the layer n − 1

2 to the layer n� 1
2:

Ψn�1
2
� T nΨn−12

, T n � eτQn : (8)

This method has proven itself well, but nonetheless it
might be useful to get a more accurate solution. Hence, we
should formulate our task as: it is required to build the tran-
sition matrix from Ψn−12

to Ψn�1
2
on the interval �tn − τ

2 , tn � τ
2	

with highest accuracy possible and minimal computational
costs.

The first step towards our goal is a change of variables
Ψ�t� � etQnY �t�, so the initial system takes the form

d
d t

Y �t� � L�t�Y �t�, L�t� � e−tQn�Q�t� − Qn�etQn : (9)

In this form, the linear matrix L�t� becomes zero at t � tn, and
the derivative of Y �t� is zero at this point. This means that the
solution is almost constant in the neighborhood of tn. If the
original system is replaced by

d
d t

Y �t� � 0, (10)

then the transition from Y n−12
to Y n�1

2
becomes trivial:

Y n�1
2
� Y n−12

: (11)

Returning to the original values of the variable Ψ at the points
tn − τ

2 and tn � τ
2, we get

Ψn−12
� e�tn−τ2�QnY n−12

, Ψn�1
2
� e�tn�τ

2�QnY n�1
2
, (12)

which, with regards to solution (11), exactly gives a transition
in the BO scheme (8). Since we are interested in the values for

Y only in the grid nodes, the solution (11) can be interpreted as
a solution to the difference equation

Y n�1
2
− Y n−12

τ
� Ln

Y n�1
2
� Y n−12

2
, (13)

which is an approximation of the continuous Eq. (9) given
that Ln � L�tn� � 0. By decomposing Eq. (13) into a Taylor
series at the point t � tn, we obtain the second order of
approximation

d
dt

Y �tn� − L�tn�Y �tn� ≈
τ2

24

d 3

d t3
Y �tn�:

Thus, we have shown that the BO scheme corresponds to the
simplest finite-difference approximation (13).

There are two possibilities to construct more complex ap-
proximations for the Eq. (9) on the interval �tn − τ

2 , tn � τ
2	.

The first is to build a finite difference analog for this equation.
The second possibility is to construct an approximation of the
operator L�t� on the entire interval �tn − τ

2 , tn � τ
2	 according

to the existing values of Qn on a regular grid and the sub-
sequent solution of such system by any analytical method.

Consider the first approach. As we want to refine the BO
scheme, we take the function Y only in two nodes of the grid
Y n−12

and Y n�1
2
. For the matrix L, we take the three nearest

values Ln−1, Ln and Ln�1. Using these values, we will look for
a scheme using the method of uncertain coefficients

Y n�1
2
− Y n−12

τ
� �αLn�1 � βLn−1�Y n�1

2

� �γLn�1 � δLn−1�Y n−12
: (14)

Here we used the condition Ln � 0, to drop the terms with Ln
in the right-hand side. By decomposing expression (14) into a
Taylor series at the point t � tn, and using the Eq. (9) at this
point and its time derivatives, we found that the expression (14)
has at least the fourth-order approximation in τ:

d
dt

Y �tn� − L�tn�Y �tn� ≈
τ4

24
�β − α�dLn

d t
d 2Ln
d t2

Y n

−
τ4

5760

�
17

d 4Ln
dt4

� 12
d 2Ln
d t2

dLn
d t

�
Y n

for γ � 1∕24 − α, δ � 1∕24 − β and arbitrary α and β. The
resulting scheme can be rewritten as

�I − ταLn�1 − τβLn−1	Y n�1
2

�
�
I � τ

�
1

24
− α

�
Ln�1 � τ

�
1

24
− β

�
Ln−1

�
Y n−12

, (15)

where

Ln�1 � e−�tn�τ�Qn�Qn�1 − Qn�e�tn�τ�Qn ,

Ln−1 � e−�tn−τ�Qn�Qn−1 − Qn�e�tn−τ�Qn :

In the original variables, this scheme will take the following
form

�I − ταMn�1 − τβMn−1	e−τ2QnΨn�1
2

�
�
I � τ

�
1

24
− α

�
Mn�1 � τ

�
1

24
− β

�
Mn−1

�
e
τ
2QnΨn−12

,

(16)

where
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Mn�1 � e−τQn�Qn�1 − Qn�eτQn ,

Mn−1 � eτQn�Qn−1 − Qn�e−τQn :

For real values ζ � ξ, energy conservation [Eq. (5)] is impor-
tant, so if α � β � 1∕48, then the transition operator

T n � e
τ
2Qn

�
I −

τ

48
�Mn�1 �Mn−1�

�
−1

×
�
I � τ

48
�Mn�1 �Mn−1�

�
e
τ
2Qn (17)

becomes a unitary matrix that conserves quadratic energy
[Eq. (5)]. Indeed, the spectrum of matrices Qn is purely imagi-
nary; therefore, the exponent e

τ
2Qn is unitary. The expression

with square brackets is the Cayley transform of the skew-
Hermitian matrix τ

48 �Mn�1 �Mn−1� into a unitary one.
The transmission matrix (17) was obtained using a transforma-
tion of variables, and it conserves the energy for the real spectral
parameters; therefore, the corresponding scheme will be called
as the fourth-order conservative transformed scheme (CT4).

The spectral parameter ξ is included only through expo-
nents, as in the BO method; therefore, the use of the fast algo-
rithm (FNFT) is difficult [9], but it is possible after exponential
approximation [11]. Due to the presence of an inverse matrix in
the transition operator, the fast calculation scheme can be con-
structed similarly to the approach for the Crank-Nicolson
scheme [9]: we have to replace the transition operator with
the ratio of the matrix polynomial to the linear polynomial.
The complete formulas for calculating are rather cumbersome;
therefore, they are not given in this Letter.

An open question is how to use free parameters a and b for
computation with complex spectral parameters. Although the
preservation of high-frequency oscillations is important, for
the eigenvalues near the imaginary axis, another criterion for
the scheme may be needed.

The following formula was used to calculate the approxima-
tion order m:

m � logτ1
τ2

kΨ̃1�L�k2
kΨ̃2�L�k2

�
log2

kΨ̃1�L�k2
kΨ̃2�L�k2

log2
τ1
τ2

, (18)

where τi, i � 1, and 2 are the steps of computational grids for
two calculations with one spectral parameter ζ and τ1 > τ2,
Ψ̃i�L� is a deviation of the calculated valueΨi�L� from the exact
analytical value Ψ̄i�L� at the boundary point t � L. The cal-
culations were carried out for different p-norms and showed
close values for the approximation orders. However, for the
Euclidean 2-norm, the graphs were the smoothest.

The scheme (17) was tested for different model signals, where
the analytical expressions for spectral data were known. In par-
ticular, various calculations exist for the oversoliton from [15] for
a small number of discrete eigenvalues. However, to present our
scheme (17), we chose calculations for one soliton potential
q�t� � sech�t� because this solution is smooth and not only
spectral data are known for it but also eigenfunctions [16].
It has a single eigenvalue ζ1 � 0.5i, b�ζ1� � −1. Since this po-
tential is purely solitonic b�ξ� � 0, the continuous spectrum
energy Ec �−1

π

R∞
−∞ ln ja�ξ�j2dξ�0, while a�ξ� � �ξ − 0.5i�∕

�ξ� 0.5i�. Here we present the comparison of BO, CT4,
and Runge-Kutta fourth-order algorithm (RK4) [8].

Figure 1 demonstrates the approximation order m of three
schemes with respect to a spectral parameter ξ ∈ �−20, 20	.
Each line was calculated by the formula (18) using two em-
bedded grids with a doubled grid step τ � L∕M , L � 40,
where coarse and fine grids were defined by M � 210 and
211. Note also that the approximation order holds for discrete
eigenvalues.

Figures 2 and 4 present the errors calculated using the BO,
CT4, and RK4 schemes. If δϕ � ϕcomputed − ϕexact (ϕ can be a

or b) then error�ϕ�ζ�	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re�δϕ�ζ�	2 � Im�δϕ�ζ�	2

q
. Since the

exact values of jaj, jbj are either 0 or 1, we use the absolute
error here.

Figure 2 shows the continuous spectrum errors for the fixed
value of the spectral parameter ξ � 20. The vertical line in
Fig. 2 marks the minimum number of grid nodes Mmin that
guarantee a good approximation. Actually, when the continu-
ous spectrum is calculated, it is necessary to choose a time
step τ � L∕M to describe the fastest oscillations correctly.
For a fixed value of ξ, the local frequency ω�t; ξ� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 � jq�t�j2
p

of the system (1) varies from ωmin � jξj to
ωmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � q2max

p
, where qmax � maxt jq�t�j is the maxi-

mum absolute value of the potential q�t�. Therefore, step τ
cannot be arbitrary. In order to describe the most rapid oscil-
lations, it is necessary to have at least 4-time steps for the
oscillation period, so the inequality must be satisfied: 4τ �
4L∕M ≤ 2π∕ωmax. Therefore, any difference schemes will

Fig. 1. Approximation order of the Boffetta-Osborne (BO),
conservative transformed (CT4), and Runge-Kutta fourth-order
(RK4) schemes.

Fig. 2. Continuous spectrum errors.
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approximate the solutions of the original continuous system (1)
if the inequality is fulfilled for the number of points
M ≥ Mmin � 2Lωmax∕π.

The continuous spectrum energy computed by three schemes
is presented in Fig. 3. It is important to define the size of the
spectral domain Lξ and the corresponding grid step dξ for
the calculation of the continuous spectrum energy. According
to the conventional discrete Fourier transform, we take the same
number of points N ξ � N in the spectral domain and define a
spectral step as dξ � π∕�2L�. Thus, the size of the spectral in-
terval is Lξ � π∕�2τ�. The energy integral was computed by the
trapezoid rule. When the truncation error becomes small, the
round-off error dominates. Any further decrease of a step size
leads to the total computational error increasing. This effect
can be observed for CT4 graph in Fig. 3.

The discrete spectrum errors are presented in Fig. 4. The
parameters a�ζ� and b�ζ� were computed for the analytically
known eigenvalue ζ1 � 0.5i. In this test, we did not use any
numerical algorithm to find the eigenvalue but compute a�ζ�
and b�ζ� at the exact point ζ � ζ1 right away. It was made inten-
tionally to estimate the error of the scheme itself and avoid the
influence of other numerical algorithm errors. It should be noted
that the parameter b�ζ� can be computed straightforwardly for
these type of potentials, but in the case of multiple solitons, one
should use different special techniques [17,18].

Figures 2 and 4 also demonstrate a comparison of the compu-
tational time. It is shown that CT4 scheme allows achieving better
accuracy faster than the BO scheme. RK4 scheme gives the same
result as CT4 for discrete spectrum, but it functions worse when it
comes to the continuous spectrum with large values of ξ. The
reason for this is the fact that RK4 scheme does on conserve
the continuous spectrum energy, which is confirmed by the Fig. 3.

In this Letter, we proposed the family of fourth-order finite-
difference one-step schemes to solve the direct Zakharov-
Shabat problem on a uniform grid. Among this family, a quadratic
integral preserving scheme for the continuous spectrum was dis-
tinguished. Numerical experiments for the soliton potential con-
firmed the theoretical order of approximation and demonstrated a
significant advantage of our conservative scheme over the Boffetta-
Osborne scheme. The proposed scheme works for uniform grids,
which can be useful when processing optical signals recorded at the
receiver at regular time intervals. The high efficiency of our scheme
can improve the performance of recently proposed soliton search
methods such as, for example, the contour integral approach [19]
if our scheme is used for computing contour integrals and the
iterative gradient descent algorithm approach [20] if the continu-
ous spectrum is computed by our scheme.
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