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The direct Zakharov–Shabat scattering problem has recently
gained significant attention in various applications of fiber
optics. The development of accurate and fast algorithms
with low computational complexity to solve the Zakharov–
Shabat problem (ZSP) remains an urgent problem in
optics. In this Letter, a fourth-order multi-exponential
scheme is proposed for the Zakharov–Shabat system. The
construction of the scheme is based on a fourth-order
three-exponential scheme and Suzuki factorization. This
allows one to apply the fast algorithms with low com-
plexity to calculate the ZSP for a large number of spectral
parameters. The scheme conserves the quadratic invariant
for real spectral parameters, which is important for vari-
ous telecommunication problems related to information
coding. ©2020Optical Society of America

https://doi.org/10.1364/OL.387436

Introduction. In 1971, Zakharov and Shabat showed that the
nonlinear Schrödinger equation (NLSE),

i
∂q
∂z
+
σ

2

∂2q
∂t2
+ |q |2q = 0, σ =±1, (1)

can be integrated by the inverse problem method [or so-called
nonlinear Fourier transform (NFT)] previously applied to
the Korteweg de Vries equation [1]. After that, interest in the
NLSE arose in all areas of physics connected with wave systems,
because the NLSE describes the envelope for narrow wave
beams. In 1973, Hasegawa and Tappert numerically investi-
gated the NLSE with respect to the propagation of light pulses
in optical fibers [2]. They proposed using solitons as an informa-
tion carrier for fiber lines with anomalous dispersion at σ = 1.
For normal dispersion at σ =−1, solitons do not exist, as is well
known. The NLSE has found widespread use in telecommuni-
cation applications. In the past few years, some new NFT-based
approaches have been actively investigated to compensate for
fiber nonlinearity and to overcome the limitations of linear
transmission methods imposed by nonlinearity [3–6].

On the other hand, attempts to create fast numerical algo-
rithms for solving the inverse scattering problem for the NLSE
have not stopped. Such methods are combined under the gen-
eral name fast NFT (FNFT) [7–11] and offer a new approach
for numerical scheme construction having a low computational
complexity O(M log2 M), where M is the number of signal
samples. Similar to the fast Fourier transform (FFT), these
algorithms can increase computational speed in comparison
with traditional approaches with a complexityO(M2).

In this Letter, we propose a special fourth-order numerical
method for solving the direct Zakharov–Shabat problem (ZSP)
and a fast algorithm for its numerical implementation. The
main advantage of the presented scheme is the conservation of
the quadratic invariant for real spectral parameters, even in the
fast version. This is the first proposed fast scheme with such a
property, to the best of our knowledge. Moreover, the accuracy
of the proposed scheme does not degrade when switching to
the fast variant for continuous spectrum computation, unlike
most other FNFT algorithms. Also, the fast variant does not
introduce a large error for big spectral parameter values for
either sign of dispersion. The quadratic invariant conserva-
tion by a numerical scheme allows calculating precisely the
reflection coefficient, which is valuable for various telecom-
munication problems connected with NFT-based coding
schemes (e.g., nonlinear frequency-division multiplexing [3]
and b-modulation [4]) and long-haul transmissions. Also, the
proposed scheme works for uniform grids, which, together with
the quadratic invariant conservation, makes it attractive for
telecommunication problems.

Direct spectral ZSP with the complex spectral parameter ζ
for the NLSE Eq. (1) can be written as an evolutionary system:

d9(t)
dt
= Q(t)9(t), (2)

where q = q(t, z0) is the initial field for the NLSE at the point
z0, which is the potential in the ZSP, and
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9(t)=
(
ψ1(t)
ψ2(t)

)
, Q(t)=

(
−iζ q
−σq ∗ iζ

)
.

Here z0 plays the role of the parameter, and we will omit it. For
details, we refer to the numerous literatures, in particular, [12].

Moreover, the system Eq. (2) can be written in the gradient
form (

ψ1
ψ2

)
t
= KD

(
ψ1
ψ2

)
= K

(
∂H
∂ψ∗1
∂H
∂ψ∗2

)
, (3)

where H = |ψ1|
2
+ σ |ψ2|

2,

K =
(
−iζ σq
−σq ∗ iσζ

)
, D=

(
1 0
0 σ

)
. (4)

For real ζ = ξ , the matrix K before the gradient becomes anti-
Hermitian K =−K † for anyσ =±1, and therefore, the system
Eq. (2) will conserve the quadratic form H.

Assuming that q(t) decays rapidly when t→±∞, the Jost
functions for ZSP Eq. (2) can be derived as

9 =

(
ψ1
ψ2

)
=

(
e−iζ t

0

)
[1+ o(1)], t→−∞. (5)

Then we obtain the scattering coefficients a(ξ) and b(ξ) as:

a(ξ)= lim
t→∞

ψ1(t, ξ)e iξ t , b(ξ)= lim
t→∞

ψ2(t, ξ)e−iξ t . (6)

The continuous spectrum is determined by the reflection coef-
ficient r (ξ)= b(ξ)/a(ξ), ξ ∈R. For anomalous dispersion,
the discrete spectrum exists. It is defined by eigenvalues of
ZSP that are zeros of a(ζ )= 0, where ζ is a complex number
with a positive imaginary part. The discrete spectrum con-
sists of the eigenvalues ζk and associated phase coefficients
rk = b(ζ )/a ′(ζ )|ζ=ζk , where a ′(ζ )= da(ζ )

dζ .
For real values of the spectral parameter ζ = ξ , we have the

quadratic invariant H. Taking into account the conditions
Eq. (5), we get the same condition H = 1 forσ =±1.

Summing up, we solve a linear system of the form Eq. (2) with
the matrix Q(t) linearly dependent on the complex function
q(t). The numerical implementation of the continuous func-
tion q(t) is a discrete function qn = q(tn), which is defined at

Fig. 1. Continuous spectrum errors for the chirped hyperbolic
secant in the case of anomalous dispersion σ = 1.

the integer nodes tn of the uniform grid with the step τ . Since
we are considering a finite time interval, we will solve the prob-
lem on the interval [−L, L] with the total number of points
equal to M + 1; the grid step in this case is τ = 2L/M, and
tn =−L + τn, where n = 0, . . . , M.

The main features of the computational problem can be
found in Ref. [12]. Briefly, the unknown function 9 must be
calculated on a uniform grid; Dahlquist’s second barrier restricts
the application of multistep methods [13,14]; matrix exponen-
tials can be easily calculated for matrices 2× 2; it is necessary to
solve the Zakharov–Shabat system for a large number of spectral
parameter values ζ at a fixed potential q(t).

Scheme. Previously, we found the necessary condi-
tions for the existence of a one-step fourth-order scheme
9(tn + τ/2)= Tn9(tn − τ/2) in the form of the Taylor series
for the transition matrix Tn . We obtained several fourth-order
schemes that exactly conserve the quadratic invariant H.
However, only one scheme in the form of three exponentials is
convenient for fast computation [12]:

Tn = e

{
τ2
12 Q(1)n +

τ3
48 Q(2)n

}
e τQn e

{
−
τ2
12 Q(1)n +

τ3
48 Q(2)n

}
, (7)

where Qn = Q(tn) and Q(k)
n , k = 1, 2, are the k-th derivatives

of the matrix Q approximated by central finite differences of the
second order.

The FNFT algorithm is based on the representation of the
transition matrix as a polynomial of a matrix exponential,
depending on the spectral parameter. Then the fast algorithms
are applied to calculate the product of polynomials. The scheme
(7) contains the spectral parameter only in the central expo-
nential. To construct the fast algorithm, we must split the
matrix

Q = A+ B, A=
(
−iζ 0

0 iζ

)
, B(t)=

(
0 q
−σq ∗ 0

)
(8)

and express exp(τQ) in the form of a polynomial in exponen-
tials of A and B with rational weights. For example, one can use
the expansions for exp(τQ) suggested in Ref. [15]. However,
representing the sum of the product of exponentials does not
guarantee the exact conservation of the invariant H. In order
for the scheme to be suitable for the fast algorithm and conserve
the invariant H, it suffices to represent the matrix exp(τQ) as

Fig. 2. Continuous spectrum errors for the chirped hyperbolic
secant in the case of normal dispersion σ =−1.
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Fig. 3. Continuous spectrum errors depending on the execution
time trade-off for the chirped hyperbolic secant and anomalous
dispersion σ = 1.

the product of exponentials of A and B with real rational coef-
ficients. Since for σ = 1 the matrices A and B are Hermitian,
then in this case, each exponent will be unitary, and the resulting
scheme will conserve the quadratic invariant H. Conserving H
also takes place for σ =−1. Details can be found in Ref. [12].
The rationality condition for weight coefficients provides an
opportunity to represent the transition matrix in the form of the
ratio of two polynomials in exp(A).

Suzuki factorization. Since the scheme (7) has a fourth order
of accuracy in τ , it is necessary to have factorization of the same
order. In addition, factorization should be suitable for a fast algo-
rithm, i.e., have rational weights. An example of such factoriza-
tion is given in Ref. [16]:

e τ(A+B)
= e

7
48 τ B e

1
3 τ Ae

3
8 τ B e−

1
3 τ Ae−

1
48 τ B

× e τ Ae−
1
48 τ B e−

1
3 τ Ae

3
8 τ B e

1
3 τ Ae

7
48 τ B . (9)

We introduce the notation Z = exp(− i
3τζ ), then the three

exponents participating in this expansion take the forms

Fig. 4. Continuous spectrum errors depending on the execution
time trade-off for the chirped hyperbolic secant and normal dispersion
σ =−1.

Fig. 5. Execution times for different algorithms in the case of
anomalous dispersion σ = 1.

e
1
3 τ A
=

(
Z 0
0 Z−1

)
= Z−1

(
Z2 0
0 1

)
, (10)

e−
1
3 τ A
=

(
Z−1 0

0 Z

)
= Z−1

(
1 0
0 Z2

)
, (11)

e τ A
=

(
Z3 0
0 Z−3

)
= Z−3

(
Z6 0
0 1

)
. (12)

Thus, the right-hand side of Eq. (9) is a rational function S(Z)
Z7 ,

where S(Z) is a polynomial not higher than 14 deg in Z.
Since Z is included only in the square, it is possible to intro-

duce the variable W = Z2, then the rational function takes the
form Ŝ(W)/W

7
2 , where Ŝ(W) is a polynomial of deg 7 or less in

W . The denominator is taken out and calculated independently.
It should be noted that besides factorization Eq. (9), the sym-
metrical representation can be applied when the matrices A and
B are interchanged. Such factorization leads to the polynomial
Ŝ(W) of deg 52, which is more computationally difficult and is
less accurate, so it is not considered here.

Thus, we represent a new scheme with Suzuki factorization
that is based on the transition matrix (7), where the central
exponential is factorized by Eq. (9).

Numerical examples. The presented scheme implemen-
tation was based on the FNFT software library [17]. It was
compared with the triple-exponential scheme without fac-
torized exponential Eq. (7) (TES4) [12] and the fourth-order
commutator-free quasi-Magnus exponential scheme CF[4]2
with FFT interpolation of the signal [11]. These algorithms
conserve the quadratic invariant H for real spectral parameters
ξ . We have considered both variants of the scheme with Suzuki
factorization: conventional (TES4SB) and fast (FTES4SB). The
last letter in the scheme name denotes the decomposition type:
TES4SA denotes the scheme with the exponential with matrix

Fig. 6. Maximum value of the quadratic invariant H conservation
error for (a) anomalous dispersion σ = 1 and (b) normal dispersion
σ =−1.
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(a) (b)

Fig. 7. Quadratic invariant conservation error |1− |ψ1|
2
−

σ |ψ2|
2
| depending on the spectral parameter ξ : (a) σ = 1, (b) σ =−1.

A at the edges of Suzuki decomposition, while TES4SB refers
to scheme (9). Moreover, we compared the proposed scheme
with the fast variant of CF[4]2 scheme (FCF[4]2 ) and the fast
variant of TES4 scheme (FTES4) constructed by fourth-order
decomposition of the exponential (Eq. (20) in Ref. [15]), which
provides the best computational speed but does not conserve the
quadratic invariant. Scheme FCF[4]2 was considered in Ref. [11],
while FTES4 was not presented elsewhere before.

A model signal was considered in the form of a chirped
hyperbolic secant q(t)= A[sech(t)]1+iC with the following
parameters: A= 5.2, C = 4 for both anomalous and normal
dispersion. The detailed analytical expressions of the spectral
data for these types of potentials can be found in Ref. [12].

We present the numerical errors of calculating the spectral
data for a continuous spectrum only, because of focusing on the
conservation of the invariant H for real spectral parameters ξ .
To find the calculation errors of the continuous spectrum energy
E c , the following formula was used:

err[E c ] =
|E comp

c − E exact
c |

φ0
, φ0 =

{
E exact

c , if |E exact
c |> 1

1, otherwise.

For the continuous spectrum, we calculated the root mean
squared error:

RMSE[φ] =

√√√√ 1

N

N∑
j=1

|φcomp(ξ j )− φexact(ξ j )|
2

|φ0(ξ j )|
2 ,

φ0 =

{
φexact(ξ j ), if|φexact(ξ j )|> 1
1, otherwise, (13)

where φ can represent a(ξ), b(ξ), r (ξ) or |Hcomp(ξ)−
Hexact(ξ)|. Here we assume the spectral parameter
ξ ∈ [−20, 20] with the total number of points N = 1025
to compare the schemes by runtime depending only on the
number of integration steps.

Figures 1 and 2 present the errors calculated using the
schemes under consideration. The scheme CF[4]2 in this particu-
lar case demonstrates an error for the coefficient b(ξ) and the
reflection coefficient r (ξ) an order of magnitude smaller than
other algorithms, in both conventional and fast variants. But
it should be noted that due to the quadratic invariant conser-
vation, the accuracy of the proposed scheme TES4SB does not
degrade when switching to the fast variant (FTES4SB), unlike
other algorithms. Also, all schemes demonstrate the fourth
order for the model signal and both signs of dispersion, except
schemes FTES4 and FCF[4]2 , which provide a fifth-order error
decrease for the energy value E t . The order is marked in Figs. 1
and 2 as 4.0 or 5.0.

The efficiency of the schemes is compared in Figs. 3 and 4.
The fast variant of the proposed algorithm FTES4SB demon-
strates the worst speed when getting the desired error value
across all considered fast schemes for both signs of dispersion.
It can be explained by the degree of polynomial used for the
transition matrix representation (7 for FTES4SB, 4 for FCF[4]2 ,
and 2 for FTES4). Of course, due to an asymptotic complexity
of fast methods [7], one can determine the temporal grid size
M for a fixed number of spectral parameter values N when the
speed and efficiency of the fast schemes become comparable
with conventional algorithms, which is demonstrated in Fig. 5.

The conservation properties of the schemes are considered
in Figs. 6 and 7. Schemes FTES4 and FCF[4]2 introduce a large
error for big spectral parameter values |ξ | for both signs of dis-
persion. All other algorithms including the proposed scheme in
a fast variant (FTES4SB) demonstrate good conservation of the
quadratic invariant H for anomalous dispersion. In the case of
normal dispersion, an error sufficiently increases due to the sub-
traction of large modulo quantities. All conventional schemes
are comparable in the magnitude of the error. The accuracy of
the proposed scheme reaches the close value of the error, though
the fast computation technique caused an increase in error up to
two orders of magnitude for normal dispersion.

In conclusion, we have developed a new multi-exponential
scheme based on our three-exponential scheme and Suzuki
decomposition, which allows fast computation and conserves
the quadratic invariant for the real spectral parameter. The
scheme consists of 13 matrix exponentials and has the fourth
order of approximation. Also, it works for uniform grids, which,
together with the quadratic invariant conservation, makes the
proposed scheme attractive for telecommunication problems.
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