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Long-lived light-bullets fully localized in both space and time can be generated in novel photonic
media such as multi-core optical fiber or waveguide arrays. In this paper we present detailed
theoretical analysis on the existence and stability of the discrete-continuous light bullets using a
very generic model that occurs in a number of applications.
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Structuring of light in space and time is a fascinat-
ing area of research and technology. In space, light can
be localized and structured by using wave-guides that
are formed by appropriate variations of the refractive in-
dex. Nonlinear optics gives another practical possibility
to localize and control light both in space and time. The
combination of these two features leads to a rich variety
of interconnected methods to structure and manipulate
spatial and temporal properties of light. In particular,
advances in fiber optics technology over the past 30 years
[1, 2], has had an impact not only in numerous highly
important applications, but it has also provided a labo-
ratory to display nonlinear phenomena such as modula-
tion instability, solitons formation and interactions, su-
percontinuum generation, parametric amplification, opti-
cal wave turbulence and many others. In space, even ear-
lier, the possibility of balancing diffraction with nonlinear
self-focusing so that localized wave-packets could prop-
agate undistorted emerged as an important topic with
broad applicability.

The theory of soliton formation and its instability
in the 1+2 dimensional nonlinear Schrödinger equation
(NLSE), i∂zU(x, y, z)+∆TU+γ|U |2σU = 0, proved that
for the focusing Kerr nonlinearity (γ positive and wlog
equal to 1) and σ = 1, a 2-d spatial soliton is unstable
in that it either collapses (for powers above critical) or
diffracts. In this equation, u represents the envelope of
the electric field; T stands for the spatial variables (x, y)
that are transverse to the direction of propagation z. At
the so called critical case (σd = 2, d=transverse dimen-
sion), collapse is arrested by various additional terms in
the model even if they are small. Most common examples
are nonlinear losses and nonlinearity saturation. In bulk
media, localization both in space and time through col-
lapse under the combined effect of diffraction, anomalous
dispersion, and nonlinear refraction leads to formation
of small-scale spatio-temporal optical structures pulses
-light bullets [3].

A mechanism of practical importance for wave col-
lapse stabilization and the formation of localized solu-
tions (light bullets) is the system discreteness. In par-
ticular, if instead of a continuum field we have a dis-
crete model with the corresponding discrete Laplacian,

our earlier pioneering work [4, 5] demonstrated in a spe-
cific rectangular geometry of waveguide arrays that stable
bullets propagate in such model. As it has been the case
in other instances, it was years later that this theoreti-
cal discovery was demonstrated experimentally. At the
time, we witnessed technological advances in photonic
crystals and multi-core fibers. Driven by major chal-
lenges in optical communication to provide methods and
techniques capable to offer transmission capacity above
the limitations of the single mode-fiber communication
channel [6–8], multi-core fiber (MCF) allows one to im-
plement spatial division multiplexing, enabling a scale-up
in transmission capacity per-fiber. Recent experimental
demonstration of light bullets (LB) in an array of optical
waveguides [9, 10] paves the way for broad applications
of light bullets in relatively low cost MCF. As the tech-
nology of multicore fibers continues to advance so are the
possible applications of such arrays. Note that spatial de-
multiplexing is also important in emerging applications
of multi-core fibers in high power fiber lasers [11, 12].

Here, the use of multi-core fiber allows one to split the
total high power into channels with power below any un-
desirable nonlinear effects. In other words, laser beams
in each core may be transported safely being below the
threshold of the detrimental nonlinear effects while the
total coherently combined power can be high. In this re-
spect, our work represents an important contribution to
this application in that it studies for the first time the
stability properties of LB under more general coupling
schemes. Finally, this new multi-core fiber technology
opens up new perspectives for the fascinating research
on light bullets (see e.g. [13-22] and references therein)
and can be a natural laboratory to study fundamental
phenomena such as nonlinear Anderson localization [14],
optical rogue wave formation [15], slow light bullets [16]
and applications such as delivery of high power/energy
light [17, 18] to name some. The MCF is a specific real-
ization of fiber arrays with flexible mutual arrangement
of cores. It is important to understand how the mutual
arrangement of fibers will affect the existence the LB and
their stability, which is the subject of the present paper.

In this Letter we present a thorough analytical descrip-
tion of localized bullets and complete analysis of it sta-
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FIG. 1: Square and hexagonal waveguide structures

bility. The numerical calculations support the analytical
results and demonstrate the range of applicability of the
analytical approach. Finally, we demonstrate the forma-
tion of the stable light bullet from the the pulse lunched
in one fiber core. Given the importance of LB in non-
linear science and the applications mentioned above and
variety of possible implementations of MCF, the main
objective of this work is to analyze the optical bullet fea-
tures in continuous-discrete optical media including their
stability under the most general coupling schemes. Our
focus is on the generic models that may be applied in var-
ious applications. This theoretical work we believe will
provide a framework in the design of multicore elements
aiming at optimizing desirable and specific applications
such as routing, switching and coherent beam combining.

For arrays of waveguides where light propagates mainly
in the central (core) region of the individual elements and
for which transverse exchange of energy is due to tails of
the field overlapping neighbor waveguides, the field is well
approximated by a superposition

E(x, y, z, t) =
∑
nm

Unm(z)F (x−xm, y−ym)ei(kz−ωt) +c.c

where we assume each waveguide is identical and sup-
ports a single mode F . The center of each waveguide
is at location (xm, ym). In this case the equations, in
the weak coupling approximation, describing the propa-
gation of the envelopes propagating in the fiber at site
(n,m) read:

i∂zUnm+(C U)n,m+
βnm2

2
∂2t2Unm+2γnm|Unm|2Unm = 0,

(1)
where (C U)nm represents the linear coupling functional
form at site (n,m), βnm2 (k) is the group v and γnm the
Kerr-parameter of each individual core. Here we assume
the cores to be identical thus βnm2 = β2, γnm = γ. In-
troducing dimensionless variables by the transformations

cz → z, tT → t,
√

γ
cU → U ;T =

√
β2

2c leads to the di-

mensionless equation to be studied in the rest of the pa-
per

i∂zUnm + (
1

c
C U)n,m + ∂2t2Unm + |Unm|2Unm = 0 (2)

We should point out that the effective nonlinearity de-
pends not only on material nonlinearity but on the cou-
pling coefficient, which can be changed by variations in
the distance between the cores. The amplitude of the ra-
diation in the cores is limited by the variety of the non-
linear effects- (SBS,SRS, optical damage). The coupling
dependence of the effective nonlinearity gives a possibility
always to find regimes where our results will be appicable
by a suitable change in the effective coefficient. To em-
phasize how the specific scalings differ from application to
application, consider for example the recent work in [23]
which considers self-focusing for fibers with 6 or 7 cores,
each of 6µm diameter, 15µm core-to-core distance, a non-
linear index of refraction of n2 = 2.2× 10−20m2/W and
a signal at a wavelength of 1064nm and the simulations
extend to 8cm. If instead the application of multi-core
fibers is to build a passive optical network [7], the charac-
teristics of the individual cores, core-to-core separation,
propagation distances, powers and wavelength used are
quite different, yet the physical principles are the same
thus both cases after proper scaling can be modeled to
first approximation by the the equation above.

Two cases of interest are (see Figure 1): the uniform
square and the hexagonal geometries, for which the re-
spective coupling operators are:

(C U)squarenm = c(Un−1,m + Un+1,m + Un,m−1 + Un,m+1)

(C U)hexagonnm = c(Un−1,m−1 + Un−1,m+1 + Un,m−2 +

Un,m+2 + Un+1,m−1 + Un+1,m+1)

This system has two known conserved quantities;
the Hamiltonian H =

∑
nm

∫
(N(U ;U)nm − |∂tUnm|2 +

|Unm|4)dt
and the total power P =

∑
nm

∫
|Unm|2dt.

The waveform of the discrete-continuous light bullets
(that are extrema of the Hamiltonian under fixed total
power P) Unm(z, t) = Anm(t)eiλz is given by the equa-
tion:

−δ(H + λP )

δA∗nm
=

−λAnm + (C A)nm + ∂2t2Anm + 2|Anm|2Anm = 0 (3)

Highly localized bullet solutions in some limits can be
derived using an asymptotic approach. The considera-
tion is that spatially most of the energy is concentrated
in one site, (0, 0) and small satellite pulses of decreas-
ing amplitude propagate in subsequent layers. Math-
ematically, this means we seek solutions of the form
Unm(z, t) = Anm(t)eiλz + cc with λ >> 1, where
each envelope has an expansion of the form Anm(t) =

A
(0)
nm(t;λ) +A

(1)
nm(t;λ) +A

(2)
nm(t;λ) + ...
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FIG. 2: Peak power (numerical (color) and theory (black
solid)) vs the parameter λ in central (a) and closer neigh-
bor waveguides (b) for 33x33 square and 33x65 hexagonal
waveguides structures

The analytical derivation of the asymptotic solutions
is straightforward [4] and we only present here the ex-
pressions for the central core and the first layer for the
square and hexagonal arrays, see corresponding indices
and notations below.

Asquare0,0 (t) = a0(t) +O(
1

λ5/2
) =

√
λ

cosh(
√
λt)

+O(
1

λ5/2
)

Asquare±1,0 (t) = Asquare0,±1 = a1(t) +O(
1

λ5/2
) =

c

2
√
λ

[e
√
λtln(1 + e−2

√
λt) + e−

√
λtln(1 + e2

√
λt)] +O(

1

λ5/2
)

Ahex0,0 (t) = a0(t) +O(
1

λ3/2
)

Ahex0,±2(t) = Ahex1,±1 = Ahex−1,±1 = a1(t) +O(
1

λ3/2
)

These solutions whose leading order terms a0, a1 are
obtained in as similar way as in [4], fail to be uni-

formly valid beyond |t| ≥ O(
√
λ). In fact at the pulse

tails, all waveguides have solutions of the same order

Anm = O(te−
√
λ|t|), t ≥

√
λ. In what follows, we com-

pare these analytical results with numerically computed
general localized LB solutions.

Our numerical studies present solutions describing con-
tinuous discrete light bullets of equation (2) where we
varied the number of elements in the array, which is an
important consideration for practical systems where the
number of cores is finite.

We find that the asymptotic expressions a0(t), a1(t) fit
the numerically found solutions of the system (3) up to
the order O( 1

λ3/2 ). In Figs. 2 and 3 analytical asymptotic
and numerical solutions are compared for c = 1 for the
rectangular structure with NxN crossed and the hexag-
onal structure with Nx2N crossed. Figure 2 depicts the
dependence of the amplitude of the solution in the cen-
tral and neighboring cores on the parameter λ. Figure
3 shows comparison of the time domain structure of the
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FIG. 3: Comparison of numerical solutions (color) with their
analytical approximations (black solid) for different λ in the
central waveguide (top) and closer neighbor waveguide (bot-
tom) for 33x33 square (green dashed dotted) and 33x65
hexagonal (red dashed) waveguides structures

light bullets for two different values of λ. A few observa-
tions can be made from Figures 2, 3. First, the asymp-
totic mode fits well the LB for large values of λ > 14
and it is an even better approximation for the square
geometry. The second observation is that the theoreti-
cal leading order approximation overshoots the numerical
outcome for the central core and under-estimates that of
the neighbor sites. This can be corrected by computing in
more detail higher order terms, but perhaps more impor-
tant is that even for values of λ where the approximation
is not as good (e.g. λ = 7), the theoretical approximation
represents a good guess for the initial state that will ad-
just to the LB in propagation. Figure 4 summarizes the
spatio-temporal amplitude and phase features of the light
bullet and figure 5 shows global characteristics of the LB
such as power and the Hamiltonian. We observed that
the functional dependence shown here is universal inde-
pendent of the number of fiber elements (assumed to be
large), and is consistent with figure 2a in [9].

Next we investigate the stability of solutions of
the form Unm(z, t) = Anm(t)eiλz by linearization
Unm(z, t) = (Anm(t) + fnm + ignm)eiλz, leading to the
system of linear equations

−∂zgnm = −(Cf)nm − ∂2t2fnm
+λfnm − 6|Anm|2fnm = (H−f)nm

∂zfnm = −(Cg)nm − ∂2t2gnm
+λfnm − 2|Anm|2gnm = (H+g)nm

or −∂2z2fnm = [H+(H−f)]nm. Defining inner products
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for square arrays:

〈f,H+f〉 =
∑
nm

∫
fnm(H+fnm)dt =

∑
nm

∫
[|Anm|2(∂t(

fnm
Anm

))2]dt+
∑
nm

∫
[(

√
An,m−1
Anm

fnm −√
An,m
An,m−1

fn,m−1)2]dt+
∑
nm

∫
[(

√
An−1,m
Anm

fnm −√
An,m

An−1,m−
fn−1,m)2]dt

and for hexagonal arrays:

〈f,H+f〉 =
∑
nm

∫
fnm(H+fnm)dt =

∑
nm

∫
[|Anm|2(∂t(

fnm
Anm

))2]dt+
∑
nm

∫
[(

√
An,m−1
Anm

fnm −√
An,m
An,m−1

fn,m−1)2]dt+
∑
nm

∫
[(

√
An−1,m
Anm

fnm −√
An,m

An−1,m−
fn−1,m)2]dt+

∑
nm

∫
[(

√
An+1,m+1

Anm
fnm −√

An,m
An+1,m+1

fn+1,m+1)2]dt+
∑
nm

∫
[(

√
An+1,m−1

Anm
fnm −√

An,m
An+1,m−1

fn+1,m−1)2]dt

In both cases and similar to the 1 + 1 + 1 case [24–26],
the following properties of the linear operators hold:

(i) 〈f,H+f〉 ≥ 0 and it is equal to 0 if fnm = 0 or
fnm = Anm.

(ii) There exist some F for which 〈−F ,H+F 〉 is nega-
tive and 〈F ,A〉 = 0.

We should point out that while we only discussed two
specific geometries, (i) and (ii) will be generally true for a
large class of coupling schemes. Properties (i) and (ii) al-
low us to conclude that the existence of negative eigenval-
ues of the operator H− is a sufficient condition for insta-
bility of the nonlinear state. Furthermore one can show
this condition is equivalent to the Vakhitov-Kolokolov
criterion on the sign of d

dλP = d
dλ 〈A,A〉. Eitherway, this

proves instability of the left branch of solutions in Fig.
5) (left).

For the highly localized solutions of the previous sec-
tion, one finds that the power P (λ) = 2λ1/2 + K/λ3/2,
where the constant K depends on the coupling coeffi-
cient and the geometry, for the square array K = 5.69
and for the hexagonal array K = 8.54. Observe that a
minimum is achieved at λc = (3K/2)1/2, so that stabil-
ity of the localized (λ > 1) bullet is assured for coupling

FIG. 4: 3D power and phase time distributions vs parameter
λ for the central (left) and closer neighbor waveguide (right)
for a square waveguides structure

FIG. 5: From left to right: (a) dependence of the total power
on the parameter λ; (b) dependence of the Hamiltonian on
the parameter λ; (c) the Hamiltonian vs the total power. All
for 33x33 square (green dashed dotted) and 33x65 hexagonal
(red dashed) waveguides structures

strengths below some critical value. This stability crite-
ria is also in agreement with the known stability of one
dimensional solitons which in this model corresponds to
the limit K → 0.

So far, we have demonstrated the existence and sta-
bility of the LB localized in several fibers. Now we will
demonstrate that the LB can be formed during the prop-
agation of an initial pulse launched from the input faces
of the array. Specifically, we simulate the propagation of
a Gaussian pulse lunched in one fiber for the hexagonal

geometry: U0,0(z = 0, t) =
√
P/(τ

√
π) exp[−t2/(2τ2)],

where P = 7.48 in both cases, and τ = 0.72 (a), τ = 0.6
(b).

Figure 6 summarizes the general picture for an inci-
dent pulse in a single fiber: The left panel highlights the
propagation for τ = 0.72 (smaller input peak power and
broader pulse), where according to our analysis, stable
LB do not exist. One can observe fast diffraction (in
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FIG. 6: Illustrative depiction of the power spatio-temporal
iso-surfaces for the propagation of an input Gaussian pulse
U0,0(z = 0, t) =

√
P/(τ

√
π) exp[−t2/(2τ2)], with P = 7.48

and τ = 0.72 (a), τ = 0.6 (b) along the array with the hexag-
onal geometry. Red iso-surfaces of the central core corre-
sponds to |U0,0(z, t)|2 = 8 and blue — for the similar power
iso-surfaces at the level 0.16 in the first neighboring cores
around the central one.

space) and dispersion (in time) of the pulse. The en-
ergy in the central core vanishes after z = 2 being spread
through the surrounding layers. For slightly higher peak
power τ = 0.6 (right panel) we observe the formation of
LB localized in center fiber and the surrounding layer.
The temporal oscillation can be explained in the follow-
ing way. The Hamiltonian is conserved in our system and
in general the initial value of H and that of the LB are
different. The adjustment of Hamiltonian takes place by
the radiation in the outside cores carrying out the Hamil-
tonian difference. Oscillations indicate the residual dif-
ferences. For reference, red spatio-temporal iso-surfaces
correspond to the central core, blue ones – to the first
circle of neighboring cores (with peak power values 50
times less than in the central core). Not shown here is
the highly nonlinear regime (τ << 0.6) where a local-
ized state propagates in stable fashion. However, one
has to consider that at kilowatt power levels, thermal in-
stabilities arise and for short pulses, higher order linear
ond nonlinear dispersion effects become relevant and the
model has to be adjusted to account for these effects. Fi-
nally figure 7 illustrates some of the rich dynamics and
fascinating scenarios that can emerge when light propa-
gates in multi-core fibers. The figure shows recurrence
(a), symmetry-breaking (b,c,d) which is also discussed in
[13], and transitions from bullet formation (e) to disper-
sive dynamics (f,g) depending on input power and sep-
aration distances when multiple pulses are incident at
different cores.

In this work we have studied spatio-temporal light bullet
propagation in an optical medium consisting of a multi-
core fiber or a general array of waveguides which as this
and other recent work indicates, can be used in a variety
of applications. We have put forward a comprehensive
theoretical framework based on asymptotic and stabil-
ity analysis that not only validates the existence of sta-

FIG. 7: A sample of dynamic scanarios for input pulses in
single (a) and multiple (b-h) ports. In (a)-(e) bullets emerge,
showing recurrence (a) and symmetry breaking (b-d). Above
critical separation between cores and or below critical power,
light propagates in dispersive mode (f-h)

ble light bullets, representing light localization in space
and time, but it demonstrates they are generic and sta-
ble for a multitude of multi-core geometries. We also
found that they can be formed as a result of the evolu-
tion of a sufficiently intense initial pulse launched into
the array. We anticipate our results present an oppor-
tunity to design array configurations whose topology is
suitable for a particular application including preparing
a LB for propagation in bulk Kerr-media [27] or in the
atmosphere. Our theoretical approach should explain re-
cent work in nonlinear arrays when the model is extended
by incorporating higher order temporal effects [28], or in
particular, provide an explanation of the observed addi-
tional (large) λ dependent time shift shown in figure 7
of [9]. Clearly such dependence would be quite useful
for time delay lines and for efficient coherent pulse com-
bining [29]. The second extension that comes to mind is
coupling active fibers, where at first approximation we
can add to the model linear gain and saturation. Finally
we concentrated our work to the study of light bullets
in the anomalous regime. A natural extension is to per-
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form similar studies to discrete spatio-temporal vortices
and other nonlinear modes. With respect to the nor-
mal regime, recent experimental results [30] demonstrate
the existence of X-waves in 1d-semiconductor waveguide
arrays. Theoretically, X-waves carry infinite energy, so
once a proper renormalization of power and the Hamil-
tonian is done to the work presented here, an improved
existence and stability analysis to 1d and 2d arrays in
the normal dispersion regime can be implemented.
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