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Nonlinear beam tapering and two-dimensional ring solitons
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We examine a possibility to exploit the nonlinear lens effect—the initial stage of self-focusing to localize
initially broad field distribution into the small central area where wave collapse is arrested—the nonlinear beam
tapering. We describe two-dimensional localized solitary waves (ring solitons) in a physical system that presents
a linear medium in the central core, surrounded by the cladding with the focusing Kerr nonlinearity. The standard
variational analysis demonstrates that such solitons correspond to the minimum of the Hamiltonian.
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I. INTRODUCTION

Spatial or temporal localization of energy is a common
feature of many physical systems. Confinement of the field
can arise from the extrinsic disorder, as in the Anderson lo-
calization, or from the nonlinear phenomena as in the soliton
theory. In the soliton systems localization is often provided
by the balance between dispersion and diffraction (leading to
temporal and spatial spreading of linear waves) and the non-
linear effects inducing to self-focusing type wave dynamics.
We would like to point our from the start, that the problem we
consider is different both from: (i) The light trapping in the
center of the hollow core fibers that is implemented by the lin-
ear wave guiding, and (ii) the existing mechanism of the field
localization in the hollow core fiber that again has nothing to
do with the nonlinear self-focusing considered here.

The process of the energy transfer from large spatial scales
to small ones can either keep coherence of the field during
squeezing (as, e.g., in a tailored taper) or be of a turbulent-like
nature, involving interactions of many uncorrelated degrees
of freedom [1]. Mechanisms of the transition from the ex-
tended fields to the states with the spatially localized energy
are important both in the fundamental science (e.g., pattern
formation, generation of the coherent structures, localization
by disorder, and so on) and in various practical applications
(e.g., capturing light, sound, or other waves in a waveguide).

There are two typical problems related to the energy
localization: How confined waves are stabilized and how
initially broad—extended field distributions can be aggre-
gated into a small area. In this paper we examine both
problems considering specific modification of the classi-
cal nonlinear model—two-dimensional nonlinear Schrödinger
equation (NLSE) with an insertion of the linear medium near
the center.

It is well known that in the two-dimensional NLSE the
field (e.g., light beam) with power above critical experiences

self-focusing (wave collapse) (see, e.g., Refs. [2–5] and ref-
erences therein). Wave collapse can be stopped by various
physical effects neglected in the main order master model (for
a comprehensive review of the collapse arrest see Refs. [2,3,6–
10] and numerous references therein).

Consider the medium with the Kerr nonlinearity with the
nonlinear coefficient n2 to be higher in the outer area com-
pared to the central hole and core. We do not specify the
geometry of the outer region, considering it here to be much
larger than the central area that we for simplicity assume to be
a circle. However, the proposed concept can be easily adjusted
to the design of the particular nonlinear system. For instance,
in the optical applications context, this can be the hollow
core embedded in the medium with the higher nonlinearity
material.

We consider a possibility of exploiting initial self-focusing
mechanism to transfer the energy from the broad spatial area
to the small region with the reduced nonlinearity (e.g., air
hole, or hollow core, depending on the specific implemen-
tation) where collapse is arrested. Nonlinearity in the area
outside the hole acts as an optical lens for the power local-
ization. This system acts as a funnel, or an effective nonlinear
taper, transferring energy from the broad area harvesting in-
coming power to the small central core.

II. MATHEMATICAL MODEL

Without loss of generality we will use optical terminology
when discussing the master model, although its applications
are much broader and can be found in a large number of
physical systems (see, e.g., Ref. [11] and references therein).
Evolution of an envelope of a quasimonochromatic optical
beam with a single polarization is governed by the nonlinear
partial differential equation—the NLSE (see, e.g., Refs. [2,11]
and references therein), that accounts for the major propa-
gation effects, such as diffraction (for the sake of clarity we
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assume that linear characteristics are the same in the core and
the surrounding area) and Kerr nonlinearity,

i
∂�

∂Z
+ 1

2n0k0
�′

⊥� + k0n2(r)|�|2� + δn0(r)� = 0. (1)

�(x′, y′, Z ) is the envelope of the electric field, and the beam
is propagating along the Z axis, �′

⊥ is a two-dimensional
transverse Laplacian operator, �r′⊥ = (x′, y′)’s are the trans-
verse coordinates, r′2

⊥ = x′2 + y′2, k0 = 2π/λ0 is the wave
number in the medium, λ0 is the vacuum wavelength, n0 is
the linear index of refraction, and n2 is the nonlinear Kerr
index. The index of refraction is n = n0 + δn0(r′

⊥) + n2(r′
⊥)I .

It is assumed here that the temporal duration of the field is
long enough to neglect time-dependent effects (dispersion).
It is convenient to rewrite the NLSE in the dimensionless
Hamiltonian form by the straightforward scaling transforma-
tion |A(x, y, z)|2 = [k2

0n0 max(n2)]|�(x′, y′, Z|2), z = n0k0Z ,
r = n0k0r′

⊥,

i
∂A

∂z
= −1

2
�∇2

⊥A − V (r)|A|2A − U (r)A = δH

δA∗ , (2)

here Hamiltonian H is defined as

2H =
∫

| �∇⊥A|2d�r −
∫

V |A|4d�r − 2
∫

U |A|2d�r.

We present below all the results in the general normalized
form. Apparently, Eq. (2) conserves the total power N =∫ |A|2d�r along with the Hamiltonian H . It is well known that
the conventional NLSE—Eq. (2) (U and V are constants)
describes the catastrophic collapse of the average radius of
the beam R = ∫

r2|A|2d�r [12], provided that H < 0. Con-
dition H < 0 is satisfied when a beam power exceeds the
critical value N of the self-focusing Ncr ≈ 5.85. The impact
of the linear potential on the self-focusing has been studied in
Ref. [13]. The main conclusion was that the wave collapse can
be delayed (in z) by the external linear potential. To stress that
the linear wave guiding is not required in the central part, in
what follows we drop a linear potential U = 0 and consider
the situation when the central area differs from the outside
medium only by the nonlinear properties (no nonlinearity, or
in the more practical terms, much higher nonlinear threshold).
This point illustrates the difference between the problem we
consider here and light localization in the hollow core fiber
where nonlinear effects are not important at all for both col-
lecting light in the small core area and keeping energy in
this core. In the hollow core fiber light localization is defined
by the (linear) waveguide that is opposite to nonlinear-based
localized considered here.

III. CONTRACTION DYNAMICS

It is evident that if the central area has no nonlinear-
ity (V = 0), the wave collapse is arrested. In the case of a
nonuniform distribution of nonlinearity using the chain of
inequalities following Ref. [14] we can prove for V (x, y)
satisfying certain conditions that the integral R = ∫

r2|A|2d�r
is bounded from below. This also gives an estimate on the
possible compression of the average radius of the beam. Let us
define Id = ∫ |∇A|2d�r, Ik = ∫ |A|kd�r and use the inequalities
[14–16]:

FIG. 1. Evolution of the intensity profile I (r, z) (upper figures—
contour plots, bottom—three-dimensional (3D) dynamics) for a
Gaussian input signal with a = 10, N = 12π . Left: The initial stage
of the compression from z = 0 to 30.

(i)
∫

V |A|4d�r � I1/2
6 (

∫
V 2|A|2d�r)1/2,

(ii) I6 � 9 I4 Id � 9 N I2
d /Ncr.

Assuming that we deal with the function V (x, y) satisfying
condition: maxx,y(V 2/r2) = B0 < ∞, it is straightforward to
derive.

2H = Id −
∫

V |A|4d�r � Id

[
1 −

(
R

Rl

)1/2]
.

Here Rl = Ncr/(9B0N ) > 0. Straightforward manipulations
show that when H < 0 (that is the condition of collapse in
the standard NLSE) we get a lower bound on R for any z,

R � Rl (1 − 2H/Id )2 � Rl .

Figure 1 depicts (contour plots and 3D) evolution of the
intensity profile I (r, z) for a Gaussian input beam A(r, 0) =√

N/(a2π ) exp[−r2/(2a2)] with a radius a = 10 and power
N = 12π . Figure 1 shows results of a numerical solution of
the NLSE (2) with a central circle area of a radius R0 = 1
where the nonlinear parameter V = 0, whereas outside the
hole V = 1. At the initial stage shown in Fig. 1 (left), the beam
is compressed from the initially broad distribution towards
the center. After that initial compression a typical dynamics
presents a breathing type oscillatory evolution characteristic
to the conservative system. The oscillating dynamics features
periodic increases and decreases of the intensity with the
corresponding compression or broadening of the beamwidth.
Note that these oscillations of the beam width occur at the
scales much smaller than the initial beam radius.

Figure 2 shows corresponding evolution of the fraction of
the total power Ntrapped/N trapped after initial compression
inside the small region around the hole in the region of r ∈
[0 Rtrapped],

Ntrapped =
∫ Rtrapped

0
|A|2d�r.
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FIG. 2. Evolution of the power trapped inside the small region
around the hole. Rtrapped = 2—solid line, Rtrapped = 3—dashed line,
Rtrapped = 5—dotted line,

Different lines correspond to the radii of the observed regions.
It is seen that in the central area with the radius of 2 the
confined power is changing between approximately 20% and
50% of the total power, and for the area with the radius of 5, it
is above 50% of the power of the initial Gaussian beam with
a = 10.

This “nonlinear tapering” effect can potentially be useful
in different applications. For instance, it can be used for a
spatial transfer of light power from a broad area (defined by
the high-power pumping sources) to a narrow core. Some
classes of high-power fiber lasers exploit cladding pumping
within a double-clad fiber structure. The first cladding has a
substantially larger area (diameter > 100 μm) compared with
that the core, allowing the efficient launch of the output from
the multimode pump sources with poor beam quality, such as,
e.g., high-power laser diodes. The pump light is then partly
propagates in the single-mode core where it is absorbed by the
laser-active ions. The nonlinear lens potentially can provide a
new design option for an efficient spatial compressor of the
low-brightness high-power radiation of the laser diodes into
a high brightness high-power laser beam coming out of the
small active fiber core.

IV. SOLITON SOLUTIONS

Arrest of a wave collapse typically corresponds to the
existence of stable solitons that provide a balance among
diffraction and dispersion, and nonlinearity [17]. Therefore,
next we examine localized steady-state solutions in the con-
sidered medium. Note that nonlinear waves in the layered
structures in the one-dimensional case have been studied (see,
e.g., Refs. [18,19]. In one-dimensional geometry an interplay
between linear wave guiding and nonlinearity can lead to non-
linear surface waves. There are two major different features
from that works in the problem we consider here. First, in
the two-dimensional (2D) case nonlinear dynamics can lead
to self-focusing and wave collapse, that is different from the
one-dimensional systems considered in Refs. [18,19]. Second,
as with what was mentioned before, there is no need for a
linear wave guiding in the system we study.

It is well known that in the framework of the pure NLS
equation, two-dimensional solitons, the so-called Townes
modes [20] are unstable. In the considered here case of the
2D NLSE with a nonuniform distribution of nonlinearity, we

FIG. 3. Intensity distribution |G(r)|2 for steady-state solutions in
linear (top) and logarithmic (bottom) scales for different values of
parameter λ (λ = 1—dashed line, λ = 4—solid line, and λ = 8—
dotted line).

observe stable 2D soliton structures with a ring-type intensity
distribution and similar breathing solutions. Their properties
are illustrated in Figs. 3 and 4. Consider steady-state so-
lutions of Eqs. (2) having the form of nonlinear localized
solitary waves propagating in the z direction, A(x, y, z) =
exp(iλz)G(x, y). The waveform of such 2D solitons is de-
scribed by the following equation [17]:

δ

δG∗ (H + λN ) = λG − 1

2
∇2

⊥G − V (x, y)|G|2G = 0. (3)

This means, in particular, that such solutions should corre-
spond to stationary points of Hamiltonian H for a fixed power
N . This equation can be seen as a stationary solution of some
auxiliary relaxation process M(G)G = 0 with the nonlinear
operator M given as

M(G) = λ − 1
2∇2

⊥ − V (x, y)|G|2.

We have used a specific relaxation method in order to find
stationary solutions described by e Eq .(3). A naive relaxation
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FIG. 4. Family of the soliton solutions for different parameters λ.

method would utilize ∂G/∂τ = M(G)G, which would relax
to a stationary solution M(G)G = 0 if it was stable which is
rarely the case. In order to enforce convergence, we modify
the relaxation problem to

∂

∂τ
M(G)G = −M(G)G. (4)

A formal solution of such a relaxation process would be
schematically expressed as M(G)G = M(G)G|τ=0e−τ which
ultimately decays to zero to yield the target of M(G)G = 0.

One can arrange the iterative relaxation process by per-
forming a differentiation in Eq. (4) in τ and introducing a new
field variable Q = ∂G/∂τ ,

λQ + 1
2�Q + 3V (r)G2Q = λG + 1

2�G + V (r)G2G.

Note that this equation is now linear in Q which allows to
construct a recurrent iteration process,

λQm + 1
2�Qm + 3V (r)G2

mQQm = λGm + 1
2�Gm

+V (r)G2
mGm,

Gm+1 = Gm + �τQm.

A reduction to the algebraic iteration problem is achieved
by approximation of Laplacian operator with a finite differ-
ence stencil, e.g., three point central difference stencil. Then
the procedure is reduced to

(1) start with a starting guess G0;
(2) find Q0;
(3) update G;
(4) break and stop when the residue error is small enough;
(5) repeat the cycle.
The resulting steady-state solutions are the functions of the

coordinates (x, y) as well as parameters λ. Families of such
multidimensional solutions are shown in Fig. 3.

Figure 3 illustrates intensity distribution in the steady-state
ring solitons. Nonuniform distribution of nonlinearity creates
the effective potential with power localized at the ring as
opposite to the monotonic 2D solitons in the uniform NLSE-
Townes modes. Figure 4 explicitly shows dependence of the
ring soliton shape on the parameter λ.

FIG. 5. Hamiltonian H of the soliton solutions of Eq. (3) versus
power N .

The observed solitons have sign-definite negative deriva-
tive dH/dN as illustrated in Fig. 5, that is a typical signature
of the stable solitons in line with the Kolokolov-Vakhitov
stability criterion [21].

V. VARIATIONAL APPROACH

Consider a standard variational [17] approach to demon-
strate that a linear core leads to the appearance of a minimum
in the Hamiltonian as opposite to the classical 2D NLS equa-
tion. Rewriting Eq. (2) in the Lagrangian form ∂L/∂A∗ = 0
with the Lagrangian L,

L = π

∫ ∞

0
r dr(iA∗Az − AA∗

z ) − H. (5)

Examples of the contraction dynamics and the soliton solu-
tions presented above suggest the double scale ring shape
beam profile, hence, the two parameter trial function is
needed. Let us consider the trial profile as Gaussian with the
width a(z) multiplied by cosh[b(z)r/a(z)] so that for b(z) > 1
the beam maximum is off-center,

A(r) =
√

N exp
( − r2

2a2

)
cosh

(
br
a

)
a
√

J (b)π
exp(iμr2/2 − iνr + ikz),

(6)

J (b) = 2
∫ ∞

0
x dx exp(−x2) cosh2(bx)

= 1 + b exp(b2)
∫ b

0
dt exp(−t2), (7)

where μ, ν, a, and b are functions of z.
We demonstrate below that is convenient to make a trans-

form from the variables (a; b) to mean radius s = r̄ and mean
square deviation w =

√
r̄2 − r̄2/a because the substitution of

the exact solution A(x, y, z) with a two-scale trial function in
the form of Eq. (6) yields reduced equations on the parameters
of the trial function in the form of Newton equations for the
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motion in the two-dimensional potential W (s,w),

d2s

dz2
= −∂W

∂s
,

d2w

dz2
= −∂W

∂w
. (8)

Here w = a
√

3/2 + b2 − C2(b) − (1 + b2)/[2J (b)] and s =
aC(b), where C(b) = √

π [1 + (1 + b2) exp(b2)]/[4J (b)].
The potential W (s,w) is obtained from W (a, b) as introduced
below in Eq. (13) by the transform (a, b) → (s,w).

Straightforward calculation of the mean values s and w

leads to the explicit transform from the pair (a; b) to (s; w),

s

a
= r̄

a
= 1

J (b)

∫ ∞

0
x2dx exp(−x2)[1 + cosh(2bx)]

=
√

π

4J (b)
[1 + (b2 + 1)eb2

] = C(b), (9)

r̄2

a2
= 1

J (b)

∫ ∞

0
x3dx exp(−x2)[1 + cosh(2bx)]

= 3/2 + b2 − 1 + b2

2J (b)
, (10)

w

a
=

√
r̄2 − (r̄)2

a2

=
√

3/2 + b2 − 1 + b2

2J (b)
− C2(b) = D(b). (11)

Finally, the substitution of the trial profile into the Lagrangian
yields

L = π

∫ ∞

0
r dr(iA∗Az − AA∗

z ) − H

− k + d[μ(r̄)2]

2 dz
− dμ

dz
σ 2/2 + d (ν − μr̄)

dz
r̄

− H (μ, ν; a, b),

H (μ, ν; a, b) = π

∫ ∞

0
r dr

∣∣∣∣dA

d�r
∣∣∣∣
2

− π

∫ ∞

1
r dr|A|4

= N
μ2σ 2 + (μr̄ − ν)2

2
+ NW (a, b), (12)

W (a, b) = W1 − NW2, W1 = 1

4a2

(
1 + 1 − b2

J (b)

)
,

W2 = 1

4a2J2(b)π
[exp(−2/a2) cosh4(b/a)

+ b
∫ ∞

1/a
dx exp(−2x2)[sinh(2bx) + sinh(4bx)/2].

(13)

Figures 6 and 7 illustrate the landscape of the potential W in
variables (a, b) and (s,w) correspondingly. It is seen that both
surfaces have the local minima corresponding to the stationary
solutions (solitons).

This choice of the trial function reflects the two scale field
distribution observed in the exact solution obtained numeri-
cally. Figure 8 shows comparison of the numerically found
soliton solution with the trial function with the same value of
power N .

1 2 3 4
0

1

2

3

4

5

a

b

FIG. 6. Potential W (a, b). Minimum at as ≈ 0.673 256 and bs ≈
1.839 93 corresponds to a stationary point (soliton).

FIG. 7. Potential W (s,w).
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FIG. 8. Comparison of intensity profiles |G(r)|2 for numerically
found steady-state solutions and the corresponding trial function for
λ = 1 in linear (top) and logarithmic (bottom) scales. Trial func-
tion corresponds to the stationary point of potential U (a, b) with
a ≈ 0.788 213 and b = 1.5833.

Evidently, Eq. (8) conserves a Hamiltonian H defined
as 2H = (ds/dz)2 + (dw/dz)2 + 2WU (s,w) = const. The
potential U (s,w) has the minimum corresponding to the ring
soliton.

VI. CONCLUSION

In general, formation of spatially localized states (soli-
tons or breathers) from plane waves is of interest in various
areas of science and practical applications [2,3,5,16,22–25].
Nonlinear instabilities and a wave collapse are examples of
the energy localization mechanisms in nonlinear systems. For
instance, a possibility of strong spatial localization of elec-
tromagnetic fields beyond the classical diffraction limit is
related to the spatial resolution problem in optics. Controlled
spatial (or temporal) localization of the the field at a certain
distance (or at some moment in time) is important for en-
ergy transfer, laser processing of materials, and various other
applications.

In conclusion, we proposed to use a medium with the
nonuniform distribution of the nonlinear refraction parameter
n2(x, y) in a way that the self-focusing of a broad initial
distribution of the field (e.g., pumping wave) starts because
the condition of self-focusing is satisfied in the outer re-
gion. However, the nonlinear beam narrowing is stopped by
the dramatic decrease in n2 in the central hole and core
where power is focused. We demonstrate through numeri-
cal modeling that in contrast to the two-dimensional NLS
equation, in the considered model, stable ring solitons can be
formed.
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