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Abstract: Nowadays, improving the accuracy of computational methods to solve the initial
value problem of the Zakharov-Shabat system remains an urgent problem in optics. In particular,
increasing the approximation order of the methods is important, especially in problems where
it is necessary to analyze the structure of complex waveforms. In this work, we propose two
finite-difference algorithms of fourth order of approximation in the time variable. Both schemes
have the exponential form and conserve the quadratic invariant of Zakharov-Shabat system. The
second scheme allows applying fast algorithms with low computational complexity (fast nonlinear
Fourier transform).
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1. Introduction

Recently, there has been great interest in the so-called nonlinear Fourier transform (NFT), which
is a generalization of the ordinary linear Fourier transform (FT) in the sense that it allows
one to decompose a field obeying a class of integrable nonlinear equations (by the inverse
scattering transform method – IST) [1,2] into a special nonlinear basis that takes into account
the contribution of solitons to the field distribution. In the limiting case, for fields with low
power, the NFT coincides with the linear FT. The NFT makes it possible to find exact solutions
for integrable nonlinear equations, such as the nonlinear Schrödinger equation (NLSE) and the
Korteweg de Vries (KdV) equations. For the first time, this idea for the NLSE was proposed
by Zakharov and Shabat in 1971 [1]. They showed that the NLSE can be integrated by the IST
method, previously applied to the KdV equations. The NLSE describes the envelope for wave
beams, therefore it is used in many areas of physics where there are wave systems [3,4].

Also, the NLSE has found wide application in telecommunication applications, since it allows
one to describe the propagation of pulses in an optical fiber. In the past few years, some new
NFT-based approaches have been actively explored to compensate for fiber nonlinearity and to
exceed the limitations of nonlinearity-imposed limits of linear transmission methods [5–10].
Despite a large number of articles [11–15] devoted to NFT, the development of the accurate

and fast numerical algorithms for NFT still remains an actual mathematical problem. A set of
algorithms named fast nonlinear Fourier transform (FNFT) offers a new approach for numerical
scheme construction having a low computational complexity O(M log2M), where M is the
number of samples per signal [16–20]. Similarly to the fast Fourier transform (FFT) this type
of algorithms can significantly increase a computational speed in comparison with traditional
approaches with a complexity O(M2). Despite this, there remains a need to improve the accuracy
of computational methods, including by increasing their approximation order, especially in
problems where it is necessary to analyze the structure of complex wave forms in the lack of data
to describe their shape [21].
In this paper, we consider a numerical method for solving the initial value problem for the

Zakharov-Shabat (ZS) system in order to solve the direct spectral problem. The integration of
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this system is the first step in the general scheme of NFT. In addition, we focus on constructing
one-step finite-difference schemes for solving the ZS system.
We present the general necessary conditions for the transition operator for fourth order

one-step difference schemes for linear systems of first order differential equation. Then we give
two examples of such schemes. Both schemes are the exponential fourth order ones, and we
show their connection with the Magnus decomposition. The main property of such schemes
is to conserve the quadratic form for real spectral parameters. Such conservation property
allows calculating precisely by numerical schemes the reflection coefficient, that is valuable for
various telecommunication problems related to information coding (for example, NFDM [5] and
b-modulation [8,9]). The second scheme contains the spectral parameter only in the exponent.
This property allows one to apply fast algorithms (FNFT) for the numerical solution of the ZS
system [22,23].
The final part of the article presents comparisons of numerical computations using the

proposed schemes and other well-known schemes: the Boffetta- Osborne second order scheme
[11], Runge-Kutta fourth order scheme [12] and the fourth order conservative scheme [24].
In our work, we do not touch on numerical methods for solving the direct problem of the ZS

system, which can be called nonlocal. However, for completeness, we will mention these methods
and give a very brief overview. A more detailed overview of the methods for the direct ZS
problem is available in [14]. First of all, such methods include the method based on the solution of
the Gelfand-Levitan-Marchenko integral equations. These methods require the inversion of large
matrices. Speedup of computations is achieved by using the Töplitz symmetry of the matrix and
an "inner bordering" procedure [25]. The second method is based on a class of commutator-free
quasi-Magnus (CFQM) exponential integrators [26]. The schemes of this method are given by
compositions of several exponentials that comprise certain linear combinations of the values of
the defining operator at specified nodes. Since the matrix of the system (in the case of the ZSP,
the matrix is given by the potential and the spectral parameter) is usually given on a uniform
grid, for applying CFQM it is necessary to compute multiple non-equispaced points within each
subinterval. One can use neighboring points for this, but in practice, the schemes use cubic-spline
based interpolation to obtain the non-equispaced points from the mid-points of each subinterval.
One can also apply interpolation based on the Fourier transform [20]. Therefore, such schemes
can be attributed to conditionally nonlocal. These schemes also conserve the quadratic form for
real spectral parameter, and the fast algorithm (FNFT) can be applied to them to solve the direct
ZSP [20], but they fundamentally depend on the method of interpolation.

2. Direct Zakharov-Shabat problem

The standard NLSE is a basic model for the pulse propagation along an ideally lossless and
noiseless fiber

i
∂q
∂z
+
σ

2
∂2q
∂t2
+ |q|2q = 0, (1)

where q = q(t, z) is a slow-varying complex optical field envelope which decays rapidly for
t→ ±∞, the variable z is the distance along the optical fiber, t is a time variable; σ = −1 and
σ = 1 corresponds to the normal and anomalous dispersion, respectively [3]. Equation (1) is
written in the moving coordinate system and describes the propagation of pulses q(t, z) in optical
fibers. The Cauchy problem is solved with the initial conditions as follows:

q(t, z)|z=z0 = q0(t).

The mathematical method suggested by Zakharov and Shabat [1] allows to integrate the NLSE.
The method, widely known as the Nonlinear Fourier Transform (NFT), allows transforming
signal into nonlinear Fourier spectrum, which is defined by the solution of the Zakharov-Shabat
problem (ZSP).
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Equation (1) can be written as a condition of compatibility

∂L
∂z
= ML − LM (2)

of two linear equations

LΨ = ζΨ,
∂Ψ

∂z
= MΨ, (3)

where Ψ(t) is a complex vector function of a real argument t,

L = i ©«
∂t −q

−σq∗ −∂t

ª®¬ , M = i ©«
σ ∂2

∂t2 +
1
2 |q|

2 −σq ∂∂t −
1
2σ

∂q
∂t

−q∗ ∂∂t −
1
2
∂q∗
∂t −σ ∂2

∂t2 −
1
2 |q|

2
ª®¬ . (4)

2.1. ZS system

The first equation in Eq. (3) is the eigenvalue problem for the operator L. For σ = −1 the
operator L is Hermitian (L = L† ≡ (L∗)T , ∗ denotes complex conjugation, T denotes transposition),
therefore the complex spectral parameter ζ = ξ + iη becomes real ζ = ξ ∈ R. There is no such
restriction for σ = 1. In this case the problem has the continuous and discrete spectra. The
continuous spectrum lies on the real axis and the discrete spectrum is in the upper half plane
Im(ζ) > 0 .
Also the first Eq. in Eq. (3) can be rewritten as an evolutionary system

dΨ(t)
dt
= Q(t)Ψ(t), (5)

where q = q(t, z) and

Ψ(t) = ©«
ψ1(t)

ψ2(t)
ª®¬ , Q(t) = ©«

−iζ q

−σq∗ iζ
ª®¬ .

Here z is a parameter, that we will skip further.
The system Eq. (5) can be written in a gradient form as follows:

©«
ψ1

ψ2

ª®¬t = J ©«
ψ1

σψ2

ª®¬ = J ©«
∂H
∂ψ∗1
∂H
∂ψ∗2

ª®¬ , J = ©«
−iζ σq

−σq∗ iσζ
ª®¬ (6)

where H = |ψ1 |2 + σ |ψ2 |2. For real spectral parameters ζ = ξ the matrix J is skew-Hermitian
J = −J† for any σ = ±1 and, consequently, the system Eq. (6) conserves the quadratic form H.
The invariant H and the matrix Q can be written using Pauli matrices σ0 and σ3 (see Appendix)
as follows:

H =

(Ψ∗,σ0Ψ), for σ = 1

(Ψ∗,σ3Ψ), for σ = −1
, Q =


Jσ0, for σ = 1

Jσ3, for σ = −1
, (7)

where the curved bracket indicate the scalar product of the complex vectors.
Assuming that q(t) decays rapidly when t → ±∞, the specific solutions (Jost functions) for

ZSP Eq. (5) can be derived as:

Ψ =
©«
ψ1

ψ2

ª®¬ = ©«
e−iζ t

0
ª®¬ [1 + o(1)], t→ −∞, (8)
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and

Φ =
©«
φ1

φ2

ª®¬ = ©«
0

eiζ t
ª®¬ [1 + o(1)], t→∞, (9)

Taking into account the boundary conditions Eq. (8), we get the condition H = 1 for real spectral
parameters. Then we obtain the Jost scattering coefficients a(ξ) and b(ξ) as follows:

a(ξ) = lim
t→∞

ψ1(t, ξ) eiξ t, b(ξ) = lim
t→∞

ψ2(t, ξ) e−iξ t. (10)

The functions a(ξ) and b(ξ) can be extended to the upper half-plane ξ → ζ [27], where ζ is a
complex number with the positive imaginary part η = Imζ > 0. The spectral data of ZSP Eq. (5)
are determined by a(ζ) and b(ζ) in the following way:

(1) K zeros of a(ζ) = 0 define the discrete spectrum {ζk}, k = 0,K − 1 of ZSP Eq. (5) and
phase coefficients

rk =
b(ζ)
a′(ζ)

����
ζ=ζk

, where a′(ζ) =
da(ζ)
dζ

;

(2) the continuous spectrum is determined by the reflection coefficient r(ξ) = b(ξ)/a(ξ), ξ ∈ R.

These spectral data were defined using the "left" boundary condition Eq. (8). Both conditions
Eqs. (8) and (9) can be used to calculate the coefficient b(ζk) of the discrete spectrum:

Ψ(t, ζk) = Φ(t, ζk)b(ζk). (11)

In addition, the following trace formula is valid [2]:

Cn = −
1
π

∫ ∞

−∞

(2iξ)n ln |a(ξ)|2 dξ +
K−1∑
k=0

1
n + 1

[
(2iζ∗k )

n+1 − (2iζk)n+1
]
, (12)

which connects the NLSE integrals Cn with the coefficient a(ξ) and the discrete spectrum ζk.
The first integrals have the form

C0 =
∫ ∞
−∞
|q|2dt, C1 =

∫ ∞
−∞

qq∗t dt, C2 =
∫ ∞
−∞
(qq∗tt + |q|4)dt,

C3 =
∫ ∞
−∞
(qq∗ttt + 4|q|2qq∗t + |q|2q∗qt)dt.

Equation (12) for n = 0 gives

C0 = −
1
π

∫ ∞

−∞

ln |a(ξ)|2dξ +
K−1∑
k=0

[
2i

(
ζ∗k − ζk

) ]
(13)

is called the Parseval nonlinear equality and is used to verify the numerical calculations and the
consistency of the continuous and discrete spectra found. The first term on the right-hand side of
Eq. (13) refers to the continuous spectrum energy:

Ec = −
1
π

∫ ∞

−∞

ln |a(ξ)|2dξ. (14)
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2.2. Features of computational problem

We solve the system Eq. (5). The matrix Q(t) linearly depends on the complex function q(t)
which is given in the whole nodes of the uniform grid with a step τ on the interval [−L,L]. Let
us note main features of the discrete problem:

1. Since the matrix Q is defined on a uniform grid, the unknown function Ψ must also be
computed on a uniform grid with the same step τ. Therefore, the Runge-Kutta methods
(RK) cannot be used on such grid. If, for example, we use an explicit 4th order RK scheme
[12], then we need to take the computational grid with a double step 2τ. In this case,
values of Qn will be used unequally.

2. For small values of the potential |q(t)| << |ζ | and Im ζ > 0, ZSP has exponentially
growing and decreasing solutions, thus A-stability of finite-difference methods is required
[28]. The method is called A-stable if all solutions of the equation ∂x/∂t = λx tend to zero
at Re λ < 0 and fixed step τ. The second barrier of Dahlquist restricts the use of multi-step
methods [29]. It means that there are no explicit A-stable multi-step methods for the Eq.
(5), and the 2nd order of convergence is maximal for implicit multi-step methods.

3. The ZSP has a matrix of size 2, therefore, the inverse matrices and the matrix exponential
(see Eq. (72) in Appendix) can be easily calculated. This allows us to include practically
any functions of the matrix Q in the difference schemes.

4. In order to calculate the spectral data for a given spectral parameter ζ , it is necessary to
solve the ZS system once. When solving the NLSE by the IST, the direct problem is only
the first step. In this method, it is also necessary to solve the inverse problem, which
requires to use the spectral data for a large number of spectral parameter values. This
number approximately equal to the number of samples for the continuous spectrum and
the finite number of spectral data necessary to find the discrete spectrum. Therefore, it is
necessary to solve the ZS system for a large number of spectral parameter values ζ at a
fixed potential q(t). This should be taken into account when implementing the algorithms.

3. General theory of one-step schemes

In this section, we consider a one-step algorithm for solving the Zakharov-Shabat system and
determine the necessary and sufficient condition for the transition matrix to have a fourth order
of accuracy. These conditions are obtained in terms of the Taylor series for the transition matrix.
Let us consider the problem Eq. (5) in a general case. We need to solve the equation

Dx = Q(t)x, D =
d
dt
, (15)

where x = x(t) ∈ Cn, using a one-step algorithm

xn+1 = Txn, (16)

where T is the transition operator, xn = x(tn), tn = nτ, τ is a step of the uniform grid.
We differentiate Eq. (15) and get the expressions for the derivatives Dkx up to 5-th order as

follows:

Dx = Qx,

D2x = (DQ)x + QDx,

D3x = (D2Q)x + 2(DQ)(Dx) + QD2x,

D4x = (D3Q)x + 3(D2Q)(Dx) + 3(DQ)(D2x) + QD3x,

D5x = (D4Q)x + 4(D3Q)(Dx) + 6(D2Q)(D2x) + 4(DQ)(D3x) + QD4x.

(17)
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Let us introduce the notation for the right-hand side of Eq. (17) and derivatives Q(k) = DkQ

Dkx = Qkx, Q1 = Q. (18)

Using Eqs. (17) and (18) we find recurrence relations for Qk as follows:

Q2 = Q(1) + Q2,

Q3 = Q(2) + 2Q(1)Q + QQ(1) + Q3,

Q4 = Q(3) + 3Q(2)Q + QQ(2) + 3(Q(1))2 + 3Q(1)Q2 + 2QQ(1)Q + Q2Q(1) + Q4,

Q5 = Q(4) + 4Q(3)Q + QQ(3) + 6Q(2)Q(1) + 4Q(1)Q(2) + 6Q(2)Q2 + 3QQ(2)Q + Q2Q(2)+

+8(Q(1))2Q + 4Q(1)QQ(1) + 3Q(Q(1))2 + 4Q(1)Q3 + 3QQ(1)Q2 + 2Q2Q(1)Q + Q3Q(1) + Q5.

Let us derive the Taylor series of x(t) at the point t, such that tn = t + sτ, tn+1 = t + sτ, s = s − 1:

x(tn+1) = x + sτDx +
(sτ)2

2!
D2x +

(sτ)3

3!
D3x +

(sτ)4

4!
D4x +

(sτ)5

5!
D5x + O(τ6), (19)

x(tn) = x + sτDx +
(sτ)2

2!
D2x +

(sτ)3

3!
D3x + +

(sτ)4

4!
D4x +

(sτ)5

5!
D5x + O(τ6). (20)

Then we denote the terms of Eqs. (19) and (20):

Lk =
sk

k!
Qk, Rk =

sk

k!
Qk (21)

and write the expansion of Eq. (16) up to 5-th order

(E + L1 + L2 + L3 + L4 + L5) = (T0 + T1 + T2 + T3 + T4 + T5)(E +R1 +R2 +R3 +R4 +R5), (22)

where E is a unit matrix and T0, . . . , T5 are the series coefficients of T . After equating the terms
of the same order we get

L1 = R1 + T1, (23)

L2 = R2 + T1R1 + T2, (24)

L3 = R3 + T1R2 + T2R1 + T3, (25)

L4 = R4 + T1R3 + T2R2 + T3R1 + T4, (26)

L5 = R5 + T1R4 + T2R3 + T3R2 + T4R1 + T5. (27)

Now we can derive recurrence relations for Tk. Obviously T0 = E. From Eq. (23) we get

T1 = L1 − R1 = sQ − sQ = Q. (28)

Therefore, for first order approximation, the expansion of transition operator T must begin with
T ≈ E + τQ and we need to know the value of Q at the point t.

From Eq. (24) we get

T2 = L2 − R2 − T1R1 =
s2 − s2

2!
Q2 − sQ2 =

2s − 1
2!

Q2 − sQ2. (29)

To find T2 we need to know the values of Q2 and Q(1) at the point t. If we do not have the
analytical expression of Q(t), we need to know the value of Q at two different points to use finite
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differences to calculate Q(1). Otherwise, we can set s = 1/2 and zero the coefficient at Q2. Then
we only need to know the value of Q2 at the point t.

From Eq. (25) we get

T3 = L3 − R3 − T1R2 − T2R1 =
s3 − s3

3!
Q3 − Q

s2

2!
Q2 − sT2Q =

=
3s2 − 3s + 1

3!
Q3 −

s2

2!
QQ2 −

(2s − 1)s
2!

Q2Q + s2Q3.
(30)

Equation
s3 − s3 = 3s2 − 3s + 1 = 0

has no real roots, therefore we cannot zero the factor in front of Q3 using s. It means that to use
any scheme of order higher then 2 we must know Q(2) or values of Q at three different points.
From Eq. (26) we get

T4 = L4 − R4 − T1R3 − T2R2 − T3R1 =
s4 − s4

4!
Q4 −

s3

3!
QQ3 −

s2

2!
T2Q2 − sT3Q. (31)

Since Eq.
s4 − s4 = (2s − 1)(2s2 − 2s + 1) = 0

has only one real root s = 1/2, this is the only way to get rid of Q4, that contains Q(3).
From Eq. (27) we get

T5 = L5 − R5 − T1R4 − T2R3 − T3R2 − T4R1 =
s5 − s5

5!
Q4 + · · · . (32)

Since Eq.
s5 − s5 = 0

has no real roots, we can not zero this coefficient varying s.
Thus we formulate
Theorem. Any one-step finite-difference Eq. (16) approximates Eq. (15) with a fourth order

of accuracy on the interval [t + s̄τ, t + sτ], where τ is the length of the interval, s ∈ (0, 1) and
s̄ = 1 − s, if and only if the expansion of the transition operator T at t for the fixed s has a form

T = E + τQ + τ2T2 + τ3T3 + τ4T4 + O(τ5), (33)

where
T2 =

2s − 1
2!

Q2 − sQ2, (34)

T3 =
3s2 − 3s + 1

3!
Q3 −

s2

2!
QQ2 −

(2s − 1)s
2!

Q2Q + s2Q3, (35)

T4 =
(2s − 1)(2s2 − 2s + 1)

4!
Q4 −

s3

3!
QQ3 −

s2

2!
T2Q2 − sT3Q (36)

and the coefficients Qk are expressed through the matrix Q and its derivatives

Q2 = Q(1) + Q2, (37)

Q3 = Q(2) + 2Q(1)Q + QQ(1) + Q3, (38)

Q4 = Q(3) + 3Q(2)Q + QQ(2) + 3(Q(1))2 + 3Q(1)Q2 + 2QQ(1)Q + Q2Q(1) + Q4. (39)
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4. Examples of schemes

Let us consider examples of constructing fourth order schemes that satisfy the conditions of the
theorem.

4.1. Constant matrix Q

Corollary 1. If the matrix Q is constant, then Qn = Qn and the expansion of the matrix T does
not depend on s and has the form

T = E + τQ +
τ2

2!
Q2 +

τ3

3!
Q3 +

τ4

4!
Q4 + O(τ5). (40)

It is clear that Eq. (40) is the expansion of the matrix exponential exp(τQ). Since it is an exact
solution for the system with a constant matrix, then the one-step scheme with the exponential
form has the infinity order of approximation for transition operator T = exp(τQ).

4.2. Symmetrical case

As mentioned before, the second order scheme does not contain the derivative Q(1) if and only if
s = 1/2. It means that the transition matrix T depends only on Q(tn + τ/2). Such choice of s
corresponds to the center of the interval and will be called the symmetrical case. The expansion
of the matrix T for the fourth order schemes in the symmetrical case gets rid of some terms and
has only the dependence on Q(1) and Q(2). Therefore, it is necessary to use Q at least at three
points for the fourth order scheme.

Corollary 2. The expansion Eq. (33) of the matrix T in the symmetrical case has the form as
follows:

T = E + τQ +
1
2
τ2Q2 +

τ3

3!
Q3 +

τ3

24
Q(2) +

τ3

12

(
Q(1)Q − QQ(1)

)
+

+
τ4

4!
Q4 +

τ4

48

(
QQ(2) + Q(2)Q

)
+
τ4

24

(
Q(1)Q2 − Q2Q(1)

)
.

(41)

Approximating the derivatives in Eq. (41) by central finite differences of the second order

Q(1)
n+ 1

2
=

Qn+ 3
2
− Qn− 1

2

2τ
+ O(τ2), Q(2)

n+ 1
2
=

Qn+ 3
2
− 2Qn+ 1

2
+ Qn− 1

2

τ2
+ O(τ2). (42)

we retain the fourth order of accuracy of the operator

Tn+ 1
2
= E + τQn+ 1

2
+
τ2

2
Q2
n+ 1

2
+
τ3

3!
Q3
n+ 1

2
+
τ4

4!
Q4
n+ 1

2
+

+
τ3

12

(
Q(1)
n+ 1

2
Qn+ 1

2
− Qn+ 1

2
Q(1)
n+ 1

2

)
+
τ3

24
Q(2)
n+ 1

2
+

+
τ4

48

(
Qn+ 1

2
Q(2)
n+ 1

2
+ Q(2)

n+ 1
2
Qn+ 1

2

)
+
τ4

24

(
Q(1)
n+ 1

2
Q2
n+ 1

2
− Q2

n+ 1
2
Q(1)
n+ 1

2

)
+ O(τ5).

(43)

In the next two sections, we will show how to use Eqs. (41) and (42) to construct other schemes.

4.3. Exponential form

It is straightforward to verify that the Eq. (41) is an expansion of the exponent

T = exp
{
τF1 + τ

3F3
}
+ O(τ5), (44)

where
F1 = Q, F3 =

1
24

Q(2) +
1
12

(
Q(1)Q − QQ(1)

)
, F2 = F4 = 0. (45)

Replacing the derivatives by the finite differences Eq. (42) we get the exponential scheme with
the fourth order of accuracy (ES4). The advantage of this scheme is that for the skew-Hermitian
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matrix Q, the matrix T becomes unitary. The scheme Eq. (43) does not possess this property,
although it also has the fourth order of accuracy. The scheme ES4 is the first of two schemes that
are the main results of our article.

Exponential form Eq. (44) of the scheme allows approximating it by the Padé approximation
[30] and apply to multidimensional systems. Also it should be noted that fast techniques (FNFT)
cannot be applied directly to the transmission matrix Eq. (44), but it is possible to construct fast
schemes using Eq. (41). These results will be presented in the future elsewhere.

4.4. Magnus expansion

Exponential form of Eq. (44) follows from the Magnus expansion [31,32]. It provides an
exponential representation of the exact evolution operator of the system Eq. (5)

Ψ(t) = U(t, 0)Ψ(0), U(t, 0) = eΩ(t),

which is constructed as a series expansion referred to as Magnus expansion: Ω(t) =
∑∞

k=0Ωk(t).
First terms of this series have forms as follows:

Ω1(t) =
∫ t

0
dt1Q(t1), Ω2(t) =

1
2

∫ t

0
dt1

∫ t1

0
dt2 [Q(t1),Q(t2)],

Ω3(t) =
1
6

∫ t

0
dt1

∫ t1

0
dt2

∫ t3

0
dt3 ([Q(t1), [Q(t2),Q(t3)]] + [Q(t3), [Q(t2),Q(t1)]]) .

Square brackets [A,B] = AB − BA are the matrix commutator of A and B.
If we represent a matrix Q(t) at the center of the integration interval t/2 by Taylor series and

keep the main terms with respect to the small parameter t, then we get

Ω1 = tQ +
t3

24
Q(2) + O(t5), Ω2 =

t3

12

[
Q(1)Q − QQ(1)

]
+ O(t5), Ω3 = O(t5). (46)

For t = τ Eq. (46) coincide with Eqs. (44)–(45). For the Schrödinger Eq. with a time-dependent
operator, decomposition was obtained in a series of papers [33–35], but the authors decomposed
the matrix Q in the Galerkin series and did not use difference schemes to find derivatives of Q.
The Magnus expansion for the ZS problem and the problem of splitting the operators was

first considered in [36]. However, only the first term of the expansion was considered and the
midpoint rule was used to approximate the integral. While this paper being reviewed an article
appeared in which the formulas for the sixth order scheme were announced [37]. However, we
consider independently only fourth order schemes and provide the alternative way of constructing
such a scheme on a rigorous mathematical basis [38].

4.5. Triple-exponential scheme

Equation (41) can be continued in a different way:

T = eτQ +
τ2

12

[
Q(1)eτQ − eτQQ(1)

]
+
τ3

48

[
eτQQ(2) + Q(2)eτQ

]
+ O(τ5). (47)

We can continue the Eq. (47) to the triple-exponential fourth order scheme (TES4)

T = exp
{
τ2

12
Q(1) +

τ3

48
Q(2)

}
exp {τQ} exp

{
−
τ2

12
Q(1) +

τ3

48
Q(2)

}
, (48)

which contains a spectral parameter ζ only at the exponential eτQ. The exponential can be split
[22], so the fast techniques (FNFT) can be applied to this scheme. The Eq. (48) conserves the
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quadratic invariant H. If we use splitting in the form of a single product of exponential [23] then
the Eq. (48) still conserves the quadratic invariant H.
The scheme TES4 is the second of two schemes that are the main results of our article.
If Q is skew-Hermitian, then Q(1) and Q(2) are also skew-Hermitian. All exponentials in

Eq. (48) are unitary matricies and, therefore, they conserve the quadratic invariant H. The
Maclaurin series of T Eq. (48) in τ gives exactly the decomposition of fourth order schemes for
the symmetric case.

Note that an approximate solution of system Eq. (5) can be represented through the product of
three exponentials using the Wilcox method [32,39]. In this case, each exponential depends on
the matrix Q and its derivatives.

5. Numerical experiments

5.1. Numerical algorithms

We solve the system Eq. (5) on the uniform grid tn = −L + τn with a step τ on the interval
[−L,L], L = 30 unless otherwise stated. If the total number of points is 2M + 1, then the grid
step is τ = L/M. We replace the original system Eq. (5) on the interval (tn − τ

2 , tn +
τ
2 ) with an

approximate system with constant coefficients

Ψn+ 1
2
= TΨn− 1

2
. (49)

The transition matrix T from the layer n − 1
2 to the layer n + 1

2 can be found using different
numerical algorithms. Here we compared the numerical results for two new schemes presented
above: the exponential scheme ES4 Eq. (44) and triple-exponential scheme TES4 Eq. (48). Then
we tried the fourth order conservative transformed scheme (CT4) with the transition operator

T = e
τ
2 Qn

[
I −

τ

48
(Mn+1 +Mn−1)

]−1 [
I +

τ

48
(Mn+1 +Mn−1)

]
e

τ
2 Qn (50)

where
Mn+1 = e−τQn (Qn+1 − Qn) eτQn , Mn−1 = eτQn (Qn−1 − Qn) e−τQn .

The CT4 scheme was introduced recently in [24]. Here we present new and more detailed
numerical results for this scheme.

Among the well known algorithms we chose the Boffetta-Osborne second order scheme (BO)
[11] and the Runge-Kutta fourth order algorithm (RK4). Following [12] for RK4 scheme we
solve the system for the envelope χ1 = ψ1eiζ t, χ2 = ψ2e−iζ t. Unlike the above schemes, RK4
does not require computing the transition matrix T . Note also that the conventional Runge-Kutta
algorithm uses half-steps in its description. Here we set this half-step equal τ, where τ is a grid
step for the potential q(t).
The spectral data are finally defined by

a(ζ) = ψ1(L − τ/2, ζ) eiζ (L−τ/2), b(ζ) = ψ2(L − τ/2, ζ) e−iζ (L−τ/2). (51)

5.2. Computation of the derivative of a(ζ)

To calculate the phase coefficients rk we need to find the derivatives

da
dζ
=

dψ1
dζ

eiζ (L−τ/2) + i(L − τ/2)a(ζ). (52)

From Eq. (49) we get
d
dζ
Ψn+ 1

2
= T ′ζΨn− 1

2
+ T

d
dζ
Ψn− 1

2
, (53)
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where initial value is defined from Eq. (8)

d
dζ
Ψ(−L − τ/2, ζ) = ©«

−i(−L − τ/2)ψ1(−L − τ/2, ζ)

0
ª®¬ . (54)

For the exponential scheme ES4 Eq. (44) the transition matrix T can be represented as T = exp(A)
and calculated using Pauli matrices Eq. (72) from the Appendix. Hence, we can find the derivative

T ′(ES4) = ea0 ©«
c′ + s′a3 + sa′3 s′a1 + sa′1 − is

′a2 − isa′2
s′a1 + sa′1 + is

′a2 + isa′2 c′ − s′a3 − sa′3

ª®¬ , (55)

where
c = cos(ω), s =

sin(ω)
ω

, ω =
√
−a21 − a

2
2 − a

2
3,

c′ = − sin(ω)ω′, s′ =
ω′

ω
(c − s), ω′ = −

1
ω
(a1a′1 + a2a

′
2 + a3a

′
3),

a′1 = i
τ2

24
(d12 − d21), a′2 = −

τ2

24
(d12 + d21), a′3 = −iτ,

d12 = qn+1 − qn−1, d21 = −σ(q∗n+1 − q
∗
n−1).

For the triple-exponential scheme TES4 Eq. (48) we obtain the derivative of the transition matrix
T

T ′(TES4) = exp
{
τ2

12
Q(1) +

τ3

48
Q(2)

}
D exp

{
−
τ2

12
Q(1) +

τ3

48
Q(2)

}
, (56)

where D =
(
eτQn

) ′ can be found from(
eτQn

) ′
= −

τζ

ωn
sin(ωnτ)I +

ζ

ω3
n
[τωn cos(ωnτ) − sin(ωnτ)]Qn − i

sin(ωnτ)

ωn
σ3, (57)

where σ3 is a Pauli matrix Eq. (71).
For CT4 scheme the transition matrix T Eq. (50) can be represented as a fraction T = A−1B,

therefore
T ′(CT4) =

(
A−1B

) ′
= A−1Q′ − A−1A′A−1B, (58)

where
A =

[
I −

τ

48
(Mn+1 +Mn−1)

]
e

τ
2 Qn = A1e

τ
2 Qn ,

B =
[
I +

τ

48
(Mn+1 +Mn−1)

]
e

3τ
2 Qn = B1e

3τ
2 .

A′ = −
τ

48

((
e2τQn

) ′
(Qn−1 − Qn) e−2τQn + e2τQn (Qn−1 − Qn)

(
e−2τQn

) ′)
e

τ
2 Qn + A1

(
e

τ
2 Qn

) ′
.

B′ =
τ

48

((
e2τQn

) ′
(Qn−1 − Qn) e−2τQn + e2τQn (Qn−1 − Qn)

(
e−2τQn

) ′)
e

3τ
2 Qn + B1

(
e

3τ
2 Qn

) ′
.

We find the derivative of matrix exponential using Eq. (57).
For BO scheme the derivative of the transition matrix can be found in [11]. For RK4 scheme

the derivative of a(ζ) can be computed using Romberg algorithm [12,40].



Research Article Vol. 28, No. 1 / 6 January 2020 / Optics Express 31

5.3. Model signals

We considered a model signal in the form of a chirped hyperbolic secant

q(t) = A[sech(t)]1+iC. (59)

For C = 0 it is a well-known Satsuma-Yajima signal. The detailed numerical results for this
potential are presented in [15].
Here we consider two test potentials: A = 5.25, C = 0 for anomalous dispersion σ = 1 and

A = 5.2, C = 4 for both anomalous and normal dispersion σ = ±1.
The analytical expressions of the spectral data of the potential Eq. (59) for anomalous

dispersion are presented in [41]. But they can be obtained similarly for normal dispersion
(σ = −1). Here we present general formulas using the Euler Gamma function Γ:

a(ξ) =
Γ[1/2 − i(ξ + C/2)] Γ[1/2 − i(ξ − C/2)]
Γ[1/2 − iξ − D] Γ[1/2 − iξ + D]

,

b(ξ) =
1

2iCA
Γ[1/2 − i(ξ + C/2)] Γ[1/2 + i(ξ − C/2)]

Γ[−iC/2 − D] Γ[−iC/2 + D]
, D =

√
σA2 − C2/4.

(60)

The discrete spectrum ζk, k = 0,K − 1 is determined by the zeros of the coefficient a(ζ) and
exists only for anomalous dispersion (σ = 1):

ζk = i
(√

A2 − C2/4 − 1/2 − k
)
, k = 0, . . . , [

√
A2 − C2/4 − 1/2], (61)

where square brackets denote the integer part of the expression.
To compute the phase coefficients rk we need to know the derivative a′(ζ) only at points ζk of

the discrete spectrum. Let us write the coefficient a(ζ) in the following form:

a(ζ) =
f (ζ)

Γ[1/2 − iζ − D]
, where f (ζ) =

Γ[1/2 − i(ζ + C/2)] Γ[1/2 − i(ζ − C/2)]
Γ[1/2 − iζ + D]

.

The function f (ζ) and its derivative f ′(ζ) have no singularities, so we have at the points of the
discrete spectrum:

a′(ζ)|ζ=ζk = −if (ζk)ϕk, (62)

where the function ϕk is defined at the points of the discrete spectrum by a recurrence relation

ϕk+1 = −(k + 1)ϕk, ϕ0 = 1. (63)

Thus we have a formula to compute the phase coefficients

rk =
b(ζ)
a′(ζ)

����
ζ=ζk

=
b(ζ)
f (ζ)

����
ζ=ζk

i
ϕk

. (64)

To calculate energy of the discrete and continuous spectra Ed, Ec, we use the Eq. (13):
C0 = E = Ec + Ed. Full energy of the potential Eq. (59) is easily computed as E = 2A2.

Let us denote K =
[√

A2 − C2/4 + 1/2
]
as an integer part of the expression in square brackets

and δ =
{√

A2 − C2/4 + 1/2
}
as its fractional part. Then the discrete spectrum energy is

Ed = 4
K−1∑
k=0

ηk = 2 (K + δ − 1/2)2 − 2 (δ − 1/2)2 . (65)

and the continuous spectrum energy is

Ec = E − Ed = 2
(
C2/4 + (δ − 1/2)2

)
. (66)
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5.4. Approximation order

The following formula was used to calculate the approximation order m:

m = log τ1
τ2

errorτ1 (Ψ)2errorτ2 (Ψ)2 =
log2
‖errorτ1 (Ψ)‖2
‖errorτ2 (Ψ)‖2

log2(τ1/τ2)
, (67)

where τi, i = 1, 2 are the steps of computational grids for two calculations with one spectral
parameter ζ and τ1 > τ2; errorτi (Ψ) = Ψτi (L) − Ψexact(L) is a deviation of the value Ψ(L)
calculated on a gris with a step τi from the exact analytical value at the boundary point t = L. The
calculations were carried out for different p-norms and showed close values for the approximation
orders. However, for the Euclidean 2-norm, the graphics were the smoothest.
Figure 1 confirms the approximation order m = 4 of the schemes with respect to a spectral

parameter ξ ∈ [−20, 20]. Each line was calculated by the Eq. (67) using two embedded grids
with a doubled grid step τ = L/M, L = 30, where coarse and fine grids were defined by M = 210
and M = 211. Let us remind that the total number of points in the whole domain [−L,L] is
2M + 1.

Fig. 1. The approximation order with respect to the spectral parameter ξ.

5.5. Formulas for errors

We present the numerical errors of calculating the spectral data for continuous and discrete
spectrum. To find the calculation errors of the continuous spectrum energy Ec, residuals rk, and
the coefficients a(ζ), b(ζ) at fixed ζ we use formula

error[φ] =
|φcomp − φexact |

|φ0 |
, φ0 =

{
φexact, if |φexact | > 1
1, otherwise,

(68)

where φ can represent Ec, rk, a(ζ) or b(ζ) at fixed ζ .
For the continuous spectrum we calculate the normalized mean squared error

NMSE[φ] =
1
N

N∑
j=1

|φcomp(ξj) − φ
exact(ξj)|

2

|φ0(ξj)|2
, φ0 =

{
φexact(ξj), if |φexact(ξj)| > 1
1, otherwise,

(69)

where φ can represent a(ξ) or b(ξ). Here we suppose the spectral parameter ξ ∈ [−20, 20] with
the total number of points N = 2M + 1 = 1025.

5.6. Numerical results for continuous spectrum

Figures 2 and 3 present the continuous spectrum errors for the potential Eq. (59) with two sets
of parameters: A = 5.25, C = 0 for anomalous dispersion σ = 1 and A = 5.2, C = 4 for both
anomalous and normal dispersion σ = ±1.
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Figure 2 shows the normalized mean squared error Eq. (69) of the coefficients a(ξ) and b(ξ)
with respect to the number of grid nodes M. The total number of points in the whole domain
[−L,L] is 2M + 1. Dashed vertical lines mark the minimum number of grid nodes Mmin that
guarantee a good approximation [24]. Actually, when calculating the continuous spectrum, it
is necessary to choose a time step τ = L/M to describe correctly the fastest oscillations. For a
fixed value of ξ, the local frequency ω(t; ξ) =

√
ξ2 + |q(t)|2 of the system Eq. (5) varies from

ωmin = |ξ | to ωmax =
√
ξ2 + q2max, where qmax = maxt |q(t)| is the maximum absolute value of

the potential q(t). Therefore, step τ cannot be arbitrary. In order to describe the most rapid
oscillations, it is necessary to have at least 4-time steps for the oscillation period, so the inequality
must be satisfied: 4τ = 4L/M ≤ 2π/ωmax. Therefore, any difference schemes will approximate
the solutions of the original continuous system Eq. (5) if the inequality is fulfilled for the number
of points M ≥ Mmin = 2Lωmax/π.

Fig. 2. Continuous spectrum normalized mean squared errors Eq. (69) of a(ξ) and b(ξ).

Figure 2 also demonstrates a comparison of the computational time. CT4, ES4 and TES4
show the comparebale accuracy, while TES4 demonstrates the best speed. In 5 out of 6 figures
the accuracy of TES4 is slightly better.
The algorithms are implemented in C++. The numerical experiments are performed on a

Intel(R) Core(TM) i7-7700HQ CPU 2.80GHz. Figure 3 shows how the numerical schemes
conserve energy. The numerical errors Eq. (68) for the continuous spectrum energy Eq. (14)
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Fig. 3. (a, c, e) Errors Eq. (68) of continuous spectrum energy. (b, d, f) Absolute errors of
quadratic invariants.

are compared in Figs. 3(a),(c), and (e). The integral was computed using the trapezoid rule.
To calculate the continuous spectrum energy it is important to define the size of the spectral
domain Lξ and the corresponding grid step dξ [24]. According to the conventional discrete
Fourier transform, we take the same number of points Nξ = N in the spectral domain and define
a spectral step as dξ = π/(2L). So the size of the spectral interval is

Lξ = π/(2τ). (70)

Figures 3(b), (d), and (f) demonstrates the deviation of the quadratic invariant H = |a|2 + σ |b|2
from unit with respect to the real spectral parameter ξ. Here the number of nodes is M = 210.
If the matrix Q is skew-Hermitian, then the matrix exp(τQ) is unitary and the quadratic

invariant conserves. For the direct ZSP this corresponds to anomalous dispersion (σ = 1) with a
real spectral parameter ζ = ξ.
Let us consider a more general system with a matrix Q = KD, where K(t) is anti-Hermitian

matrix depending on t, D is a constant Hermitian matrix. The system Eq. (5) conserves the
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quadratic value H = (Ψ∗,DΨ). Indeed, we have this result from the chain of equalities

d
dt
(Ψ∗,DΨ) =

(
dΨ∗

dt
,DΨ

)
+

(
Ψ
∗,D

dΨ
dt

)
= (K∗D∗Ψ∗,DΨ) + (Ψ∗,DKDΨ) =

=
(
Ψ
∗, (D∗)T (K∗)TDΨ

)
+ (Ψ∗,DKDΨ) =

(
Ψ
∗,D(K† + K)DΨ

)
= 0.

For one-step exponential methods Ψn+ 1
2
= eRnDΨn− 1

2
, where Rn is skew-Hermitian matrix, the

quadratic invariant also conserves. It follows from the chain of equalities

(Ψ∗n+ 1
2
,DΨn+ 1

2
) = (eτR

∗
nD∗Ψ∗n− 1

2
,DeτRnDΨn− 1

2
) = (eτR

∗
nD∗Ψ∗n− 1

2
, eτDRnDΨn− 1

2
) =

= (Ψ∗n− 1
2
, e−τRnDeτDRnDΨn− 1

2
) = (Ψ∗n− 1

2
,DΨn− 1

2
).

Here we used the formula DeτRnD = eτDRnD, because for any natural p the equality is valid:
D(RnD)p = (DRn)

pD.
From this result follows, that Boffetta-Osborne scheme BO [11], exponential scheme ES4 Eq.

(44), and triple-exponential scheme TES4 Eq. (48) are conservative for normal and anomalous
dispersion. Similarly the scheme CT4 Eq. (50) also conserves the quadratic invariant, because it
is the function of RnD.
Figure 3 confirms that RK4 scheme does not conserve the continuous spectrum energy and

quadratic invariant for the real spectral parameters.
Figure 3(f) corresponds to the case of normal dispersion, therefore in the center of the spectral

interval the parameters a(ξ) and b(ξ) have large values. This leads to the higher computational
error in this zone. At the same time the quadratic invariant in this case equally conserves for all
schemes considered here. However, RK4 scheme again shows the worst results at the edges of
the spectral interval.

5.7. Numerical results for discrete spectrum

Figures 4 and 5 present the discrete spectrum errors Eq. (68). The parameters a(ζk), b(ζk) and
rk were computed for the analytically known eigenvalues Eq. (61). Here we did not use any
numerical algorithm to find the eigenvalue but computed spectral data at the exact point ζ = ζk
right away. It was made intentionally to estimate the error of the scheme itself and to avoid the
influence of the other numerical algorithm errors. The review of the approaches for finding the
eigenvalues can be found in recent papers [15,20].
There are well known problems with the computation of the coefficient b(ζk). We used the

bi-directional algorithm [42] to find b(ζk) by the Eq. (11).
Figure 5 presents the errors Eq. (68) of computing the phase coefficients for the maximum

eigenvalue ζ0 Eq. (61) with respect to the amplitude A of the potential Eq. (59). Here L = 20,
M = 211.
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Fig. 4. Discrete spectrum errors for the maximum eigenvalue ζ0.

Fig. 5. The errors Eq. (68) of phase coefficients for the maximum eigenvalue ζ0 Eq. (61).



Research Article Vol. 28, No. 1 / 6 January 2020 / Optics Express 37

6. Conclusion

Two new forth order exponential schemes for the numerical solution of the direct Zakharov-Shabat
problem were presented and compared with the known ones. The ES4 scheme demonstrates the
excellent computational speed and accuracy, but has difficulties with the direct application of the
FNFT algorithms. The TES4 scheme shows almost the same accuracy and even better speed than
ES4. One can expect that a three-exponentials scheme should work at least 3 times longer than a
one-exponential scheme. The speed of TES4 is explained by the fact, that two exponentials do
not depend of the spectral parameter, while the third one exp(τQ) is calculated by the simplified
explicit formula [11]. The exponential in ES4 requires the general form of Eq. (72). However
the main advantage of TES4 scheme is that FNFT algorithms can be applied to it [23].
The CT4 scheme also shows good accuracy comparable with two exponential schemes

mentioned above, but it works about 2.5 − 3 times longer than ES4. In the recent paper [43]
CT4 scheme was compared with NFT algorithms based on exponential integrators, namely, the
integrators based on the classical fourth order (explicit) Runge-Kutta method, the three-stage
Lobatto IIIA (implicit) Runge-Kutta method, as well as the standard and commutator-free Magnus
methods. In addition the multi-step implicit Adams method was considered. In terms of accuracy,
CT4 outperforms every other method examined in [43].

The CT4 scheme does not allow the direct application of the FNFT algorithms. However the
FNFT algorithms can be applied to the CT4 and ES4 schemes after exponential approximation
[22].

All the schemes ES4, TES4 and CT4 have an advantage over RK4 because they conserve the
energy for the continuous spectrum parameter.

As already mentioned in the introduction, the CFQM schemes also conserve the quadratic form
and have a high order of accuracy. Of course, they depend fundamentally on the interpolation
method, but comparing our one-step schemes with such CQFM schemes is of interest and will be
done carefully in subsequent works.

Appendix

The Pauli matrices can be used to calculate the matrix exponential in Eq. (44). A 2 × 2 complex
matrix A can be presented as A = a0σ0 + a1σ1 + a2σ2 + a3σ3, where σj are Pauli matrices:

σ0 =
©«
1 0

0 1
ª®¬ , σ1 =

©«
0 1

1 0
ª®¬ , σ2 =

©«
0 −i

i 0
ª®¬ , σ3 =

©«
1 0

0 −1
ª®¬ (71)

Then the matrix exponential can be found as

eA = ea0 [cσ0 + is (a1σ1 + a2σ2 + a3σ3)] = ea0 ©«
c + sa3 s(a1 − ia2)

s(a1 + ia2) c − sa3

ª®¬ , (72)

where ω =
√
−a21 − a

2
2 − a

2
3, c = cos(ω), s =

sin(ω)
ω

.
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