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a b s t r a c t

In order to reveal the pattern effect in the optical signal transmission it is studied as a random complex
process. The different sources of detection error are studied for quadrature phase-shift keying in the
absence of nonlinearity: the error in the rectangular filter width, the finite duration of the initial pulses,
the deviation of detection point from the bit interval center. The dispersion and diameter of cloud in the
constellation diagram are calculated and shown to be less for longer initial pulses. The error of imperfect
optical system is proved to be important at a noise level of 11 dB and more. The result is also applicable
for 8-PSK, 16-PSK and higher formats.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Exploiting the coherence detection and phase-shift keying
formats [1] is a very promising way to increase the capacity of
fiber communication networks [2]. Nyquist (sinc) pulse shaping
provides spectral efficiency close to the theoretical limit [3].
Perfect Nyquist pulses have the rectangular shape in the frequency
domain. It allows one to arrange the frequency channels as dense
as possible. In time domain the shape of Nyquist pulses is
sincðπbtÞ, where 2πb is the channel bandwidth. Sinc-like pulses
are extended to neighbor bit intervals to the left and to the right.
Since they turn to zero in the centers of bit intervals, it is possible
to detect each bit separately when we choose the detection point
exactly in the center. Nyquist pulses are well-known in electronics,
but relatively new in optics.

From a mathematical point of view the Nyquist pulse can be
obtained by passing very short pulse (close to δ-function) through
the rectangular optical filter of the width 2πb in concordance with
the bit interval T¼1/b. The application of rectangular filter
corresponds to mixing of an optical pulse with Nyquist signal
and integration over time, because the product of Fourier trans-
forms is equivalent to the convolution of functions in the time
domain. Then it is impossible to get the perfect sinc-like signal,

since theoretically it spreads out along the whole time axis, and
then all the pulses influence each other. Similarly it is impossible
to realize a perfect rectangular filter, since the delay of a pulse
passing through the filter must be infinite [4]. The Nyquist signals
in a non-ideal optical system are one of the urgent problems of
optical communications [5].

In the present paper we consider an optical communication
link where the short pulses are passing through the rectangular
filter at the transmitter end in order to form the Nyquist shape.
The identical rectangular optical filters is applied at the receiver
end. In a linear system, in the context of pulse shapes, the signal
passing through two rectangular filters is equivalent to passing
through one filter with the minimal bandwidth. In the frequency
domain the filtering means multiplication by the transfer function,
then only the less width enters the result. Then one can consider
the line with identical input and output rectangular filters with
minimal width. The following parameters influencing the pulse
shape are treated: the finite duration of pulses at start, the
variation of rectangular filter bandwidth at the receiver end, and
the deviation of the detecting point from the center of bit interval.
We analyze the contribution of each factor into the coordinates in
the constellation diagram. We compare the effects of noise and
imperfect optical system. We find the signal-to-noise ratio (SNR)
for which the effect of imperfect optical system occurs greater
than that of the noise.

The filter decreases the noise of amplifiers and splits the link
bandwidth by individual channels. At the same time the narrow
filter changes the shape of pulses broadening them in the time

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optcom

Optics Communications

0030-4018/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.optcom.2014.01.008

n Corresponding author at: Institute of Automation and Electrometry, Siberian
Branch, Russian Academy of Sciences, 1 Koptjug Ave, Novosibirsk 630090, Russia.

E-mail address: shapiro@iae.nsk.su (D.A. Shapiro).

Optics Communications 320 (2014) 27–32

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2014.01.008
http://dx.doi.org/10.1016/j.optcom.2014.01.008
http://dx.doi.org/10.1016/j.optcom.2014.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.01.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.01.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.01.008&domain=pdf
mailto:shapiro@iae.nsk.su
http://dx.doi.org/10.1016/j.optcom.2014.01.008


domain [4,6]. The pulses overlap, and then the nearest (adjacent)
pulses and more distant pulses influence the signal. The result
depends on the realization of the bit sequence. This effect (the
pattern effect) is a serious problem in high-speed all-optical
communications [7].

To include all the possible patterns the sequence has to be
modeled as a random process. For the amplitude modulation (on/
off keying format) the statistical approach is applied in paper [8].
Here we consider the quadrature phase-shift keying (QPSK)
format. The coordinate of given pulse on complex plane can also
be considered as a random complex number. The aim of present
paper is to find the domain of values and dispersion of this
random number. In Section 2 we introduce the possible sources
of the error, describe the constellation diagram, the Nyquist signal
and the optical system. Section 3 presents the results of simula-
tion: root-mean-square and marginal errors on the complex plane.

2. Sources of error

2.1. Duration of initial pulse

In phase-shift keying QPSK format four values are used for
coding, placed equidistantly in the unit circle. We chose the values
0, π/2, π, 3π/2, a bit pair corresponds to each value. We assume
pairs “00”, “01”, “10”, “11”, respectively. The sequence of optical
pulses is defined by formula ∑ncnEnðtÞ, where EnðtÞ ¼ Eðt�nTÞe� iωct

is complex electric field, n is the number of bits, t is the time, T is
the duration of a bit interval, ωc is the carrier optical frequency, E(t)
is the profile of an individual pulse. For pulses with profile
EðtÞ ¼ A expð�t2=2T2

0Þ, where T0 is the pulse width parameter,
A is a coefficient, the duration is determined relation W ¼ 1:67T0.
For QPSK format the coefficients cn possess the values cnA
f1; i; �1; � ig, i¼

ffiffiffiffiffiffiffiffi
�1

p
.

Mathematically the pulse transmission through the rectangular
filter is realized by multiplication of its Fourier transform by
rectangular function:

BðωÞ ¼
1; jωjoπb;

0; jωj4πb;

(

where b is the spectral width of filter. For the Gaussian pulse with
zero phase the profile after the rectangular filtering is given by the
formula:

~EðtÞ ¼ Ae� t2=2T2
0 Re erf

πT0bffiffiffi
2

p þ it

T0
ffiffiffi
2

p
� �� �

: ð1Þ

Here erfðxÞ ¼ 2
R x
0 e

� t2 dt=
ffiffiffi
π

p
is the error function [9]. To study the

effect of neighbor pulses let us use value ~Eðδ0Þ as a normalization
factor, where δ0 is the deviation of detecting point from the center
of bit interval, then the single pulse is located in point (1,0).

Let us calculate the influence of a remote pulse that is separated
by l bit intervals from the pulse with n¼0. The normalized
distortion is

ɛl ¼
e� τ2=2T2

0 Re erf
πT0bffiffiffi

2
p þ iτ

T0
ffiffiffi
2

p
� �� �

Re erf
πT0bffiffiffi

2
p þ iδ0

T0
ffiffiffi
2

p
� �� � ; ð2Þ

where b is the bandwidth of filter, τ¼ lTþδ0. The effect of 2k neighbor
pulses is given by the sum

ξðkÞ ¼ 1þ ∑
k

l ¼ 1
ɛlclþɛ� lc� lð Þ: ð3Þ

where cl and c� l are statistically independent values. Coefficient
cl posses values f1; i; �1; � ig with probability 1/4. If δ0 ¼ 0, then
ɛl ¼ ɛ� l.

After filtering the coordinate of a pulse is a complex random
number. The coordinates depend on the neighbor pulses. If we
take into account k neighbor pulses to the left and k to the right,

Fig. 1. Schematic diagram of the transmitter end of optical system.
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Fig. 2. Comparison of signal obtained from narrow pulse (pulse duration is
W¼2.5 ps) with the help of rectangular filter (with bandwidth b¼40 GHz) (filled
circles) with pure Nyquist pulse (solid line) (a). The same for longer pulse (pulse
duration W¼12.5 ps) (b) and for wider filter (bandwidth b¼43 GHz) (c).
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then the domain of possible values of the coordinates belongs to
the square with center ð1;0Þ and diameter D¼ 2∑k

l ¼ 1ðjɛljþjɛ� ljÞ.
The mathematical expectation of random value ξðkÞ is equal to
unity: MξðkÞ ¼ 1.

An important characteristics of a random value is its dispersion.
The dispersion of complex random number is given by relation
Dξ¼Mjξ�Mξj2. For ξðkÞ the dispersion is

s2 ¼DξðkÞ ¼ 1
4

∑
k

l ¼ 1
ðɛ2l þɛ2� lÞ: ð4Þ

In a real optical system a finite number of neighbor pulses to the
left and to the right should be taken into account. To choose the
number of pulses one has to know the specifics of optical filter
realization. We calculate the dispersion in Section 3 for k¼4.

2.2. Nyquist signal

The signal achieves the maximum bit interval utilization [3]
when its shape is

sincðπbtÞ ¼ sin ðπbtÞ
πbt

; b¼ 1
T
: ð5Þ

The Nyquist profile can be obtained by rectangular filtering of
δ-function. At zero phase the perfect sinc-like signal turns to zero

at the centers of neighbor bit interval and hits the constellation
diagram in point ð1;0Þ.

However, the shape of signal can deviate from perfect profile (5) if
the initial Gaussian pulse is insufficiently narrow. The error is
possible when parameter T0 is not infinitely small, the width of
rectangular optical filter b differs from T �1 (greater or less) or the
shape of filter deviates from the rectangular one. Furthermore the
detection time error is possible when the phase measurement at
the receiver end is carried out not exactly in the center of bit interval.
The deviation from the ideal optical system transforms the point in
the constellation diagram into a cloud on the complex plane.

2.3. Optical system

We consider the following optical system. Transmitter gener-
ates Gaussian pulses that pass through the rectangular filter. Then
the channels are mixed. At the receiver end the channels are
separated. The signal is mixed with the Nyquist signal and
integrated over time for determination of the coefficients cn of
the bit sequence (coherence detecting). From a mathematical
point of view the convolution with function (5) is equivalent to
passing through a rectangular filter of width b¼1/T.

Scheme of the transmitter end is shown in Fig. 1. Rectangles
denote generation of Nyquist signals with fixed time delay
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Fig. 3. Distribution of positions of detected pulses in the constellation diagram: b¼41 GHz, W¼2.5 ps, δ0 ¼ 0 (a), b¼41 GHz, W¼6.67 ps, δ0 ¼ 0 (b), b¼40 GHz, W¼2.5 ps,
δ0 ¼ 0:5 ps (c), b¼40 GHz, W¼2.5 ps, δ0 ¼ 1:5 ps (d).
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t ¼ 0; T ;…;NT . Small circles correspond to modulation of each
signal by complex coefficient cn;n¼ 0;1;…;N. Symbol Σ marks
mixing all the signals and transmission to the communication line.
The receiver end of the optical system has the same structure.
Multiplexer Σ is replaced by the coherent detector (splitter),
where the signal is mixed with the shifted Nyquist pulse and
integrated over time. Each coefficient at the receiver is determined
by formula

ck ¼
b
A

Z 1

�1
~EðtÞ sinc ½πbðt�kTÞ�eiωct dt: ð6Þ

The infinite limits of integration enable one to use the exact ortho-
gonality relationZ 1

�1
sinc ½πbðt�mTÞ� sinc ½πbðt�nTÞ� dt ¼ δmn

b
;

where δmn ¼ 1, if m¼n, or 0 else, is the Kronecker delta-symbol.

3. Numerical simulation

We vary the width b of optical filter, the pulse parameter T0 and
the deviation δ0 of the detection point from the bit interval center.
The results of simulation follow.

Fig. 2(a, b) illustrates the influence of pulse width parameter T0.
Fig. 2(a) shows that if the pulse duration W¼2.5 ps is much less
than the bit interval T¼25 ps, then the shape of signal after
rectangular filtering is very close to the Nyquist profile. If the
pulse is not sufficiently narrow, the shape in Fig. 2(b) essentially
departs from the perfect Nyquist profile. Fig. 2(a, c) describes the
influence of the filter width. Fig. 2(c) demonstrates that for short
pulse the deviation from the Nyquist profile occurs at 7.5%
variation in the width. Moreover, as distinct from the Nyquist
profile, the zeros of the function are no longer equidistant.

The constellation diagram on the complex plane at the receiver
end is shown in Fig. 3. Fig. 3(a) depicts the distribution after the
rectangular filter with b¼41 GHz for a pulse of duration
W¼2.5 ps. Fig. 3(b) refers to b¼41 GHz, W¼6.67 ps. The detecting
point for both subfigures in the first string is the bit interval center.
If the detecting takes place not exactly in the center of bit interval,
then the coordinates of pulses on the complex plane are also the
random numbers. The second string in Fig. 3 illustrates the effect
of detecting point error. The detecting point is shifted from the
center by δ0 ¼ 0:5 ps (c), or by 1.5 ps (d). It is obvious that the
diameter of cloud grows fast with the shift δ0.

Fig. 4 shows the dependence of root-mean-square (RMS)
deviation s for the pulses on imperfectness factors: inaccurate
filter bandwidths and shifts of detection point. Fig. 4(a) shows the
RMS deviation for the wider filters, Fig. 4(b) shows it for the
narrower ones. For wider filter calculation demonstrates also that
the dispersion has a minimum. Fig. 4(c) demonstrates the linear
increase in s with the shift δ0.

The shape of cloud on complex plane is a square, as illustrated
by Fig. 3. The marginal deviation of a point from the center for
square is half of the diameter D/2 (half of the diagonal). The
maximum deviation is important characteristics of the detector.
The maximum deviation is shown in Fig. 5. Fig. 5(a) shows the
maximal deviation for the wider filters, Fig. 5(b) shows it for
the narrower ones. Wider filter calculation also demonstrates that
the deviation has a minimum. If the initial pulses are not too short
and the filter is a little wider than 40 GHz, then the constellation
diagram occurs more compact. For example, at b¼41 GHz the
value D/2 remains within 1/10 for almost all the values of pulse
duration.

Fig. 5(c) demonstrates that even a small shift of the detection
point substantially increases the dimension of cloud. Although the
dispersion in Fig. 4(c) is not very large, the diameter of cloud in
Fig. 5(c) is much greater. That means the existence of a few “bad”
bit sequences resulting with much more deviation from point (1,0)
than the average RMS deviation. An example of “bad” sequence is
presented in Table 1. In the middle of the sequence there is the
unit coefficient c0 ¼ 1, where clɛlo0, l¼ 71, 72, 73, 74. This
sequence corresponds to the left vertex of the square on the
complex plane. Alternative “bad” sequences can be obtained after
the following procedure: let us choose a subsequence and multiply
all its elements by i. The factor i can be changed by � i for all the
elements in order to obtain the complex conjugated “bad”
sequence. Thus there are 29�1 “bad” bit sequences. On the
complex plane these sequences correspond to the left sides of
square. The bisectors of the first and the fourth coordinate
quadrants are lines restricting the decision-making domain of
“0,0” bit pair. Then the left sides of square are the most risky in the
recognition process.

In addition to considered above there is an important factor of
signal degradation in the optical communication line, the noise of

Fig. 4. RMS deviation for wider filter (a): b¼40 (solid line), 41 (dashed), 42 (long
dashes), 43 GHz (dot-dashed). RMS deviation for the narrower filter (b): b¼40
(solid line), 39.5 (dashed), 39 (long dashes), 38 GHz (dot-dashed). RMS deviation as
a function of the detection point shift (c) at b¼40 GHz, W¼2.5 ps.
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amplifiers. In the absence of noise the pure Nyquist signal with
zero phase hits the complex plane in point (1,0), when it is
normalized by the value in the center. When we add the Gaussian
noise the point is converted into a cloud. Fig. 6 displays the
average dimension of this cloud as a function of SNR. Comparison
with Fig. 4 proves that the imperfect pulse duration, inaccuracy in
the filter width and deviation of the detecting point gives the same
effect as the Gaussian noise in the perfect optical system at SNR
below 16–18 dB.

In an imperfect optical system with Gaussian noise the coordi-
nates of pulses in the constellation diagram depend both on the
neighbor pulses and on the level of noise. The more RMS deviation
from point (1,0), the greater probability of error detection is. Fig. 7
shows the dependence of BER (bit-error rate) on the initial pulse
duration for channels with the noise level SNR¼10.65 and 12.6 dB.
The optical filter width is b¼42 GHz, the detection occurs in the
bit interval center. It is obvious that at SNRE11 dB the signal
quality can be improved utilizing wider pulses. This conclusion is
in agreement with Figs. 4(a) and 5(a). As for the quantita-
tive values, the system without filtering, i.e. perfect optical system
with the noise SNR¼10.65 and 12.6 dB, the bit-error rate is
log 10ðBERÞ ¼ �3:2 and �4.8, respectively.

Note that the result can be extended to the higher formats. The
number of different values of phase is equal to the number of
vertices of the regular polygon on complex plane. The distribution
in constellation diagram has the shape of regular polygon, too.
For 8-PSK it is a regular octagon etc. The diameter of an octagon
and the root mean square deviation are given by the same
formulas as the square for QPSK format.

4. Conclusions

The location of detected pulse in the constellation diagram is
considered as a random complex number. We clear the domain of
its values on the complex plane and its broadening due to the
pattern effect. For QPSK format it is a square. The dispersion of
random normalized value ξðkÞ and the diameter of cloud on the
complex plane are calculated analytically. The longer pulses are
shown to be preferable for a line with imperfect filtration (floating
bandwidth of the rectangular filter). For the longer pulses both the
dispersion and diameter of cloud are less, since the errors partially

Fig. 6. RMS deviation as a function of signal-to-noise ratio.

4 6 8 10 12
4.5

4.0

3.5

3.0

Pulse duration ps

lo
g
B
ER

Fig. 7. BER as a function of Pulse duration W for SNR¼10.65 (circles) and 12.6 dB
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Fig. 5. Half a diameter of the cloud (marginal deviation) in the constellation
diagram as a function of pulse duration W. For the wider filter (a): b¼40 (circles),
41 (squares), 42 (diamonds), 43 MHz (triangles). For the narrower filter (b): b¼40
(circles), 39.5 (squares), 39 (diamonds), 38 GHz (triangles). Diameter of the cloud as
a function of the detection point shift at b¼40 GHz, W¼2.5 ps (c).

Table 1
Coefficients cn of “bad” sequence.

c�4 c�3 c�2 c�1 c0 c1 c2 c3 c4

�1 1 �1 1 1 �1 1 �1 1
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cancel each other. The most “risky” sequences are revealed corr-
esponding to the left sides of the square in the constellation
diagram. The new effects of imperfect phase detection are com-
pared with known effect of Gaussian noise and shown to be
important for the noise level nearly 11 dB and more.
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