УВЕЛИЧЕНИЕ ДАЛЬНОСТИ РАБОТЫ РАСПРЕДЕЛЕННОГО АКУСТИЧЕСКОГО ДАТЧИКА НА ОСНОВЕ ФАЗОЧУВСТВИТЕЛЬНОГО ИМПУЛЬСНОГО РЕФЛЕКТОМЕТРА И ЭРБИЕВОГО УСИЛИТЕЛЯ С УДАЛЕННОЙ НАКАЧКОЙ ДО 120 КМ

[™]А.С. Дудин^{1,2}, Д.Р. Харасов¹, Э.А. Фомиряков^{1,2}, С.П. Никитин¹, О.Е. Наний^{1,2}, В.Н. Трещиков¹

¹Группа компаний Т8, Москва ² Московский государственный университет им. М. В. Ломоносова, Москва, Россия ¹² dudin.as19@physics.msu.ru

φОТDR, регистрирующий рэлеевское обратное рассеяние в волокне, используется в распределенных акустических датчиках (DAS) для охраны и мониторинга протяженных объектов, а также в распределенных датчиках изменения натяжения и температуры. Дальность работы таких датчиков ограничена затуханием света в волокне и составляет порядка 50 км. Увеличение дальности за счет увеличения мощности зондирующего импульса ограничено из-за негативного воздействия нелинейных эффектов [1, 2]. Для увеличения дальности работы можно использовать распределенные рамановские усилители на эффекте вынужденного комбинационного рассеяния (ВКР) [3], однако их применение затруднено тем, что использующиеся в них лазеры 1450–1460 нм не являются массовым продуктом. Более распространены лазеры на длине волны ~1480 нм, которые применяются в эрбиевых волоконных усилителях. В данной работе нами исследована возможность увеличения дальности работы DAS «Дунай» компании «Т8 Сенсор» за счет использования эрбиевого волоконного усилителя с удаленной накачкой (далее ROPA).

Схема экспериментальной установки изображена на рис. 1. фОТDR был подключен к линии из трех катушек стандартного одномодового волокна общей длиной 119,1 км. Коэффициент затухания на длине волны 1550 нм ~0,18 дБ/км. После 69 км в линию было вварено 2 м эрбиевого волокна. Для накачки эрбиевого волокна использовался лазер на длине волны 1480 нм с выходной мощностью ~500 мВт. Пиковая мощность зондирующего импульса на входе в линию составляла 200 мВт при выключенной накачке ROPA и 30 мВт при включенной.

Рис. 1. Схема экспериментальной установки

[©] А.С. Дудин, Д.Р. Харасов, Э.А. Фомиряков, С.П. Никитин, О.Е. Наний, В.Н. Трещиков, 2023

Длительность импульса составляла ~200 нс, а частота повторений — 2 кГц, что обеспечивает разрешающую способность ~20 м. Обратнорассеянное рэлеевское излучение регистрировалось в приемной части рефлектометра и анализировалось на компьютере.

Для оценки увеличения дальности работы фОТDR в работе измерялись продольные зависимости отношения сигнал-шум фототока SNR, [4]:

$$SNR_I(z) = 10\log_{10}\frac{S(z)}{N(z)},$$

где под мощностями сигнала S(z) и шума N(z) подразумеваются квадрат среднего значения $S = \langle \overline{I(z)^2} \rangle$ и дисперсия $N = \langle \sigma_I^2 \rangle$ фототока в точке волокна z, $\langle \rangle -$ усреднение вдоль расстояния волокна, а — усреднение по времени/номеру импульса. В данной работе SNR_1 вычислялось по 100 последовательно измеренным рефлектограммам и усреднялось в скользящем окне ~0,5 км. Сравнение SNR_1 показано на рис. 2. Из-за падения уровня сигнала на дальних километрах уровень SNR_1 пакже уменьшается. На практике без ROPA в обычном волокне дальность работы DAS «Дунай» составляет ~70–75 км, которому соответствует уровень SNR_1 ~10 дБ. При таком уровне можно регистрировать такие слабые воздействия, как шаги человека на закопанный оптический кабель на глубине 0,5–1 м. Более сильные воздействия (например, проезд поезда) можно обнаружить и при более низком SNR_1 . При использовании ROPA уровень SNR_1 опускается до порогового значения только на ~120 км.

Puc. 2. SNR,-линии при различных мощностях накачки в логарифмическом(дБ) масштабе

В ходе работы продемонстрировано увеличение дальности работы DAS «Дунай» на 45 км за счет использования ROPA при мощности накачки 500 мВт. Общая дальность работы составила не менее 120 км, а перекрываемое затухание в одну сторону — не менее 19,4 дБ.

Список литературы

1. Nikitin S. P., Ulanovskiy P. I., Kuzmenkov A. I. et al. Influence of modulation instability on the operation of phase-sensitive optical time domain reflectometers // Laser Physics. 2016. Vol. 26 (10). P. 105106.

2. Alekseev A. E., Vdovenko V. S., Gorshkov B. G. et al. Contrast enhancement in an optical time-domain reflectometer via self-phase modulation compensation by chirped probe pulses // Laser Physics. 2016. Vol. 26 (3). P. 035101.

3. Martins H. F., Martín-López S., Corredera P. et al. Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over > 100 km // Journal of Lightwave Technology. 2014. Vol. 32 (8). P. 1510–1518.

4. Kharasov D. R., Naniy O. E., Nikitin S. P., Treschikov V. N. Operating range limitations of the Phase-Sensitive Optical Time-Domain Reflectometer assisted by Raman amplifiers // International Conference Laser Optics (ICLO). 2018. P. 285–285.