ВЛИЯНИЕ ДИФФУЗИОННОГО ЛЕГИРОВАНИЯ НА ПОРОГ ОПТИЧЕСКОГО РАЗРУШЕНИЯ ДИФОСФИДА ЦИНКА-ГЕРМАНИЯ

Н. Юдин, [™]М. Зиновьев, В. Кузнецов, Е. Слюнько, В. Воеводин, А. Лысенко, А. Кальсин, Л. Шаймерденова, Х. Баалбаки, В. Калыгина

Лаборатория радиофизических и оптических методов исследования окружающей среды, Национальный научно-исследовательский Томский государственный университет, Томск, Россия Институт сильноточной электроники, Томск, Россия ⊠muxa9229@gmail.com

Тройное соединение дифосфид цинка-германия (далее — ZGP), кристаллизующееся в структуре халькопирит с точечной группой 42m [1], обладает высокой теплопроводностью 05 Вт / см · К, двулучепреломлением, достаточным для фазового согласования, высоким порогом оптического пробоя и твердостью [3–5]. Потенциал нелинейно-оптических кристаллов ZnGeP₂ максимально реализуется в параметрических генераторах света, преобразующих лазерное излучение с длиной волны вблизи 2,1 мкм в излучение, перестраиваемое в области 3–8 мкм [6, 7]. В настоящее время данных о влиянии диффузионного легирования различными химическими элементами на порог оптического пробоя ZGP очень мало.

Целью данной работы является исследование влияния диффузионного легирования ZGP, такими химическими элементами как Mg, Se, Ca на порог оптического пробоя (LIDT) на длине волны 2,1 мкм.

Для исследований использовался монокристалл ZGP, из которого было вырезано 8 образцов с ориентацией (100) и размерами $5 \times 5 \times 2,45$ мм³. На предварительно отполированные грани образцов термическим способом производилось распыление, следующих химических элементов: Mg, Se, Ca (толщина напыляемой пленки составляла 1 мкм). После чего производился отжиг образцов ZGP с нанесенными пленками и двух контрольных образцов без напыления в запаянной вакуумированной ампуле, в которую добавлялась навеска порошка ZGP, при температурах 650° C для одного набора образцов и при 750° C для другого аналогичного набора в течение 180 часов.

Далее производилось измерение порога оптического пробоя полученных образцов ZGP. В качестве источника излучения использовался Но: YAG-лазер, генерирующий излучение на длине волны 2,097 мкм с накачкой непрерывным тулиевым волоконным лазером [8].

Из результатов измерения LIDT и удельной электропроводимости (см. таблицу) прослеживается качественная зависимость. Легирование химическими элементами, снижающее удельную электропроводимость образцов (σ), приводит к росту LIDT; а легирование химическими элементами, приводящее к возрастанию удельной электропроводимости образцов, уменьшает LIDT. Например, при легировании ZGP кальцием σ возрастает примерно на порядок, а при легировании ZGP Mg и Se, напротив, наблюдается уменьшение σ примерно на порядок.

[©] Н. Юдин, М. Зиновьев, В. Кузнецов, Е. Слюнько, В. Воеводин, А. Лысенко, А. Кальсин, Л. Шаймерденова, Х. Баалбаки, В. Калыгина, 2023

Легирующая	σ, 1/Ом∙см	Порог оптического пробоя	Порог оптического пробоя
примесь		при отжиге 650 °С, Дж/см ²	при отжиге 750 °С, Дж/см ²
Mg	5,42·10 ⁻⁶	2,6	2,94
Se	4,16·10 ⁻⁷	2,64	2,7
Ca	15.10-5	28	1,92
ZGP	14.10-6	26	24

Проводимость исследуемых образцов и параметры порога оптического пробоя

Изменение удельной проводимости косвенно свидетельствует о перераспределении энергетических уровней примесных атомов в запрещенной зоне.

Показано, что диффузионное легирование монокристалла ZGP Mg и Se приводит к увеличению LIDT, при отжиге на температуре 750 °C порог пробоя образцов легируемых Mg и Se увеличивается на 31 % и 20,5 % с 24 Дж/см² до 2,94 и 2,7 Дж/см² соответственно. При легировании ZGP Са наблюдается противоположная тенденция.

Изменение LIDT в зависимости от диффузионно вносимой примеси можно объяснить созданием дополнительных каналов диссипации энергии за счет процессов излучательной и быстрой безызлучательной релаксации через примесные энергетические уровни.

Список литературы

1. Nikogosyan D. N. Nonlinear optical crystals: A complete survey. N. Y.: Springer, 2005.

2. Boyd G.D., Buehler E., Storz F.G. Linear and nonlinear optical properties of $ZnGeP_2$ and CdSe // App. Phys. Lett. 1971. Vol. 18. P. 301–304.

3. Dmitriev V.G., Gurzadyan G.G., Nikoghosyan D.N. Handbook of Nonlinear Optical Crystals. 2nd. ed. Berlin: SpringerVerlag, 1995.

4. Рудь В.Ю. Оптоэлектронные явления в дифосфиде цинка и германия // Физ. и техн. ПП. 1994. Т. 28. С. 1105.

5. Водопьянов К.Л., Воеводин В.Г., Грибенюков А.Л., Кулевский Л.А. Высокоэффективная пикосекундная параметрическая суперлюминесценция в кристалле ZnGeP₂ в диапазоне 5–6 мкм // Квант. электр. 1987. Т. 14. С. 1815–1819.

6. Henriksson M., Tiihonen M., Pasiskevicius V., Laurell F. $ZnGeP_2$ parametric oscillator pumped by a line width narrowed parametric 2 µm source // Opt. Lett. 2006. Vol. 31. P. 1878–1880.

7. Vodopyanov K. L., Ganikhanov F., Maffetone J.P. et al. $ZnGeP_2$ optical parametric oscillator with 3.8–12.4 µm tenability // Opt. Lett. 2000. Vol. 25. P. 841–843.

8. The R-on-1 Test. Lidaris LIDT Service 2019 https://lidaris.com/laser-damage-testing/r-on-1-test/.