ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ВЕЛИЧИНЫ ПОРОГА ОПТИЧЕСКОГО ПРОБОЯ НЕЛИНЕЙНЫХ КРИСТАЛЛОВ LiGaS₂, LiGaSe₂, ВаGa₄Se₇ ОТ ДЛИТЕЛЬНОСТИ ИМПУЛЬСА ВОЗДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ^{*}

[™]А. Курусь^{1,2}, И. Зайцева³, Д. Самошкин⁴, А. Голошумова^{1,2}, К. Горбаченя⁵, А. Лазарчук⁵, В. Кисель⁵, Л. Исаенко^{1,2}

¹Институт геологии и минералогии им. В. С. Соболева СО РАН, Новосибирск, Россия ²Новосибирский государственный университет, Новосибирск, Россия ³Институт автоматики и электрометрии СО РАН, Новосибирск, Россия ⁴Институт теплофизики им. С. С. Кутателадзе СО РАН, Новосибирск, Россия ⁵Белорусский национальный технический университет, Минск, Беларусь

⊠kurusaf@igm.nsc.ru

Теплопроводность является одной из важнейших характеристик нелинейно-оптических кристаллов. Однако зачастую этот параметр даже не фигурирует при их характеризации. Особенно сильное влияние теплопроводность оказывает на порог оптической стойкости нелинейной среды, работающей в составе мощных лазерных системах в пико- и фемтосекундном режиме излучения. Вот почему изучение влияния теплопроводности нелинейной среды на ее оптическую стойкость является актуальной задачей, позволяющей открыть потенциально но-

вые возможности использования уже известных кристаллов.

В рамках исследования выращивались модифицированным низкоградиентным методом Бриджмена кристаллы LiGaS₂, LiGaSe₂ BaGa₄Se₇ (LGS, LGSe, BGSe соответственно) высокого оптического качества [1]. Изготовлены оптические элементы из этих кристаллов для исследования теплопроводности, теплоемкости и порога оптической стойкости в разных режимах длительности импульса лазерного излучения.

Определено изменение значение коэффициентов теплопроводности в диапазоне температур от комнатной до 700 К, которые составили:

^{*}Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-52-04006\21. Исследования оптического пробоя в пико- и фемтосекундном режиме выполнены при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф21РМ-129).

© А. Курусь, И. Зайцева, Д. Самошкин, А. Голошумова, К. Горбаченя, А. Лазарчук, В. Кисель, Л. Исаенко, 2023

от 9 до 3 Вт/м*К для кристалла LGS, от 2,4 до 6 Вт/м*К для кристалла LGSe и от 0,6 до 0,44 Вт/м К для BGSe.

Измерен порог оптической стойкости для кристаллов LiGaS2, LiGaSe2 в нано-, пикои фемтосекундном режиме излучения (рис. 1, 2). Показано, что у кристалла LiGaS₂, обладающего очень высокой теплопроводностью по сравнению с LGSe и особенно BGSe, сильно возрастает порог оптической стойкости при работе в пико- и фемтосекундном режиме, что открывает возможности по его применению в мощных широкоперестраиваемых оптических системах и является редкостью для кристаллов тройных халькогенидов. Таким образом, подтверждается, что при работе с нелинейными оптическими элементами в пико- и фемтосекундных режимах облучения значительный вклад в порог его оптической стойкости вкладывает теплопроводность.

Puc. 2. Экспериментальные значения оптического пробоя для кристаллов LiGaS₂ (слева) и LiGaSe₂ (справа) при фемтосекундном режиме облучения

Список литературы

1. Kurus A., Lobanov S., Grazhdannikov S. et al. LiGaS₂ crystal growth under low temperature gradient conditions by the modified Bridgman method // Materials Science and Engineering: B. 2020. Vol. 262. P. 114715.