МАГНИТООПТИЧЕСКИЕ РЕЗОНАНСЫ ВРАЩЕНИЯ В ПОЛЕ ВСТРЕЧНЫХ ВОЛН В ЯЧЕЙКЕ С ПАРАМИ ⁸⁷ RB^{*}

[™]А.О. Макаров^{1,2}, Д.В. Бражников^{1,2}, А.Н. Гончаров^{1,2,3}

¹ Институт лазерной физики СО РАН, Новосибирск, Россия ² Новосибирский государственный университет, Новосибирск, Россия ³ Новосибирский государственный технический университет, Новосибирск, Россия [№] werklore@mail.ru

В настоящий момент разработкой высокочувствительных магнитометров с оптической накачкой занимаются во многих лабораториях мира. Эти квантовые устройства имеют весьма широкую сферу применений: от исследований ядерного магнитного резонанса (ЯМР) до биомедицины. В нашей работе предлагается модификация (рис. 1) стандартной схемы Ханле, используемой в современных миниатюрных квантовых сенсорах магнитного поля (например, от компании QuSpin Inc., США). В отличие от стандартной конфигурации с одной бегущей волной мы применяем две встречные линейно-поляризованные световые волны, резонансные оптическому переходу в D_1 -линии рубидия-87 ($\lambda \approx 795$ нм).

Puc. 1. Схема экспериментальной установки: ECDL — лазерный диод с внешним резонатором;
BS — делитель пучка (50/50); PBS — поляризационный делительный кубик; HΦ — нейтральный фильтр; PDB — балансный фотодетектор; Rb — цилиндрическая стеклянная ячейка с парами рубидия-87 и буферным газом (длина ячейки 25 мм, диаметр 20 мм); W — призма Волластона; λ/2 — полуволновая пластинка; P — поляризатор. Температура ячейки ≈ 74 °C

© А.О. Макаров, Д.В. Бражников, А.Н. Гончаров, 2022

^{*} Работа выполнена при поддержке РФФИ (грант № 20-52-18004) и Министерства науки и высшего образования РФ (тема № АААА-А19-119102890006-5).

Волна накачки наводит в резонансной среде линейный дихроизм. Пробная волна, линейная поляризация которой находится под углом 45° относительно волны накачки, имеет компоненту поляризации, параллельную волне накачки (E_{\parallel}) и компоненту поляризации, ортогональную ей (E_t). При этом компонента E_{\parallel} практически не поглощается в среде из-за явления когерентного пленения населенностей (КПН), тогда как E_t испытывает сильное поглощение (более подробное в [1]). Таким образом, происходит вращение линейной поляризации (рис. 2) пробной волны при распространении через ячейку. Магнитооптический резонанс регистрировался в разностном канале балансного фотодетектора (PDB на рис. 1) и имел полную ширину на полувысоте около 1 мГс (100 нТл) и величину поворота угла поляризации $\approx 23^\circ$.

Результаты наших экспериментов сопоставимы с результатами других работ (например, [2–4]). На основе предложенной схемы наблюдения магнитооптических резонансов может быть разработан высокочувствительный магнитометр. В схеме на основе нелинейного фарадеевского вращения температура атомов, как правило, выше 100 °C (см., например, [5]), в предложенной нами схеме нагрев ячейки осуществляется до температур 70–80 °C. На частоте 60 Гц, при которой планируется осуществлять сканирование магнитного поля, значение сигнал/шум в полосе 1 Гц равно порядка 10^5 , что дает оценку чувствительности измерений магнитного поля на уровне 1 пТл/Гц^{1/2}.

Puc. 2. Резонансы вращения при разных температурах исследуемой ячейки

Список литературы

1. Brazhnikov D.V., Ignatovich S.M., Novokreshchenov A.S., Skvortsov M.N. Ultra-highquality electromagnetically induced absorption resonances in a cesium vapor cell // J. Phys. B: At. Mol. Opt. 2019. Vol. 52. P. 215002.

2. Budker D., Kimball D. F., Rochester S. M. et all. Sensitive magnetometry based on nonlinear magneto-optical rotation // Phys. Rev. A. 2000. Vol. 62. P. 043403.

3. Wilson N., Light P., Luiten A., Perrella C. Ultrastable Optical Magnetometry // Phys. Rev. Applied. 2019. Vol. 11. P. 044034.

4. Zhu C. J., Guan J., Zhou F. et al. Giant magneto-optical rotation effect in rubidium vapor measured with a low-cost detection system // OSA Continuum. 2021. Vol. 4. P. 2527.

5. Shah V., Knappe S., Schwindt P.D. D., Kitching J. Subpicotesla atomic magnetometry with a microfabricated vapour cell // Nature Photonics. 2007. Vol. 1. P. 649.