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A generic novel model governing optical pulse propagation in a nonlinear dispersive amplifying medium
with asymmetric (linear spectral slope) gain is introduced. We examine the properties of asymmetric optical
pulses formed in such gain-skewed media, both theoretically and numerically. We derive a dissipative
optical modification of the classical shallow water equations that highlights an analogy between this
phenomenon and hydrodynamic wave breaking. These findings provide insight into the nature of
asymmetric optical pulses capable of accumulating large nonlinear phase without wave breaking, a crucial
aspect in the design of nonlinear fiber amplifiers.
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In many physical and engineering problems dealing with
optical amplification a frequency dependence of the gain
(that usually is broader compared to the considered signal
bandwidth) is assumed to be symmetric and is often
approximated by the Lorentzian spectral shape [1,2]. This
is, typically, a justified assumption in the spectral region near
the peak of the gain curve. There are, however, relatively
fewer explored possibilities to use edges of the gain profile
that is not symmetric. Here, we examine the impact of
asymmetry in the spectral gain shape on formation and
evolution of optical pulses at the carrier frequency ω0 in an
amplifying nonlinear dispersive medium, considering the
simplest linear asymmetric gain profile, that in the frequency
domain reads

gðωÞ ¼ g0 − g1ðω − ω0Þ:

The slope of the gain asymmetry can be both positive or
negative depending on the sign of g1. Higher-order terms can
be easily included, however, we focus here on the impact
of the most general first-order approximation of the gain
asymmetry. Of course, we assume that at larger deviations
fromω0 linear spectral dependencewill be changed and gain
will not grow to infinity making the problem ill posed. Note
that propagation of the light field affected both by gain and
loss can be of interest for studies of optical systems with
parity-time symmetry [3].

In the recent works of the Cornell group [4] a new type of
asymmetric nonlinear pulse propagation was demonstrated,
distinguished by the presence of a dynamically evolving
gain spectrum. Nonlinear spectral broadening of the pulse
led to its reshaping due to absorption and amplification.
The dynamic change of the gain and spectral broadening
led to quasistable regimes where pulse was partially propa-
gating at the edge of the material gain curve. We anticipate
that our analysis of a much more simple “minimal” model
will provide useful insight into characteristics of non-
linear pulse propagation in a medium with spectrally
asymmetric amplification, beyond standard parabolic gain
curve approximations.
Consider propagation of an envelope of the optical field

ψðz; tÞ down the amplifying dispersive optical medium
with Kerr nonlinearity within the framework of the one-
dimensional generalized nonlinear Schrödinger equation
(NLSE) with asymmetric gain.
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Here, β2 is the group velocity dispersion, γ is the nonlinear
Kerr coefficient, z is a propagation spatial coordinate, t is a
standard retarded time [2], and g0 and g1 define a gain
profile. Equation (1) is well studied for the case g1 ¼ 0,
when it governs parabolic pulse formation in the central
energy-containing part (see, e.g., [5–10] and references
therein). A self-similar parabolic pulse is an approximate
wave breaking free solution of Eq. (1) (with g1 ¼ 0). We
would like to reiterate that formally this equation is ill
posed due to the infinite growth of the gain at large
frequencies. However, we prefer here not to introduce
any formal mathematical regularization that will change
generality of the model, but instead stress that the equation
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is valid only in the area (in the frequency domain) around
ω0 where gain can be approximated by a straight line and
should not be used beyond this spectral region.
In what follows, we consider only the case g0 ¼ 0,

because solutions of Eq. (1) Aðz; tÞ with g0 ¼ 0 and Ψðz; tÞ
with g0 ≠ 0 can be expressed by each other using the
transform Ψðz; tÞ ¼ Aðz; t − β2g0z=g1Þ expð−ig0t=g1þ
i0.5β2g20z=g

2
1Þ, that has a transparent physical meaning

of the effective central frequency shift by the Galilean
transformation. In what follows we will use a retarded time
tr ¼ t − β2g0z=g1 for Aðz; trÞ and will skip index r in
notation. Below, similar to [2] we will use variable ω for the
detuning around the central frequency ω0. Equation (1)
(with g0 ¼ 0) has two conserved integrals, energy E and the
Hamiltonian H:

E ¼
Z

jAðz; tÞj2 exp
�
2g1t
β2

�
dt;

2H ¼
Z

ðβ2jAtj2 þ 2g21jAj2=β2 þ γjAj4Þ exp
�
2g1t
β2

�
dt:

The simple way to prove this is to make a transformation
Aðz; tÞ ¼ Bðz; tÞ exp½−g1t=β2� with the equation for the
field B being conservative.

In this Letter, we consider the evolution of the initial
Gaussian pulse Aðt; z ¼ 0Þ ¼ ffiffiffiffiffiffi

P0

p
exp½−t2=ð2T2

0Þ� in
Eq. (1). In the linear case (γ ¼ 0) pulse experiences
amplification combined with the conventional broadening,
while continuously accelerating: position of the pulse tpðzÞ
peak power is changing following the parabolic trajectory:
tpðzÞ ¼ −β2g1z2=T2

0. The direction of the drift is defined
by the sign of the product of dispersion and gain slope
parameter β2g1. Gain slope leads to the continuous shift
of the position of the pulse spectral power maximum in
the frequency domain: ωpðzÞ ¼ −g1z=T2

0. In the linear
medium, evolution of the considered initial pulse preserves
its symmetric Gaussian shape both in time and frequency
domains; see Supplemental Material [11] for details.
In the nonlinear regime, however, the initially symmetric

wave form evolves into asymmetric pulse. It is convenient
to rewrite Eq. (1) in the normalized form with two
dimensionless parameters ϵ and δ:

i
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2
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: ð2Þ

Here, Aðz; tÞ ¼ ffiffiffiffiffiffi
P0

p
UðZ; TÞ, T ¼ t=T0 (Ω ¼ ωT0,

Uðz; TÞ ¼ R
Uðz;ΩÞ expð−iΩTÞdΩ), Z¼z=Ldis, with

FIG. 1. Formation of asymmetric nonlinear pulses without OWB (at the propagation distances Z ≤ 3): (a) and (c) Show 3D evo-
lution of pulse intensity and power spectral density, respectively. (b) Shows in the plane (Z, T) a function ρ1ðZ; TÞ ¼
0.5ϵjUðZ; TÞj−3ð∂2jUðZ; TÞj=∂T2Þ that defines applicability of the “quasiclassical” approximation [Eqs. (3) and (4)]. The middle
row shows pulse intensity (black lines) and instantaneous frequency at Zk corresponding to the horizontal lines marked with the index k
(k ¼ 1, 2, 3, 4, 5) in the upper row. The bottom row shows the power spectral density at Zk. Here, ϵ ¼ 0.004, δ ¼ 0.045.
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Ldis ¼ T2
0=jβ2j. We consider the so-called normal disper-

sion medium with β2>0. Parameters ϵ¼jβ2j=ðγP0T2
0Þ¼

LNL=Ldis (see, e.g., [2]) and δ ¼ g1T0=jβ2j define the pulse
evolution. Parameter ϵ characterizes the interplay between
dispersive and nonlinear effects and is small in highly
nonlinear regimes considered here.
Similar to amplification with constant gain [5,6],

depending on the initial power and temporal width [that
correspond to different points in the (ϵ, δ) plane], Gaussian
pulse evolution in Eq. (2) can lead to regimes with (i) the
optical wave breaking (OWB) [15,16] defined as an over-
taking of different parts of the pulse, and nonlinear
generation of new frequencies during overtaking, or
(ii) without wave breaking (up to a certain distance), for
details, see Supplemental Material [11]. As we will show
below, the type of the nonlinear evolution is determined by
an interplay between the so-called “quantum pressure”
term in Eq. (2) (for details, see, e.g., [17,18]):
ð1=2jUjÞ½ð∂2jUjÞ=∂T2� ¼ ρ1jUj2=ϵ and the pulse chirp
introduced as C ¼ −ð∂2=∂T2Þ argðUÞ, with the parameter
ρ1 [a ratio between the “quantum pressure” and the non-
linear term jUj2=ϵ in Eq. (2)] playing an important role in
the defining conditions of a wave breaking.
Propagation of the initial Gaussian with the parameters

ϵ ¼ 0.004 (Ldis=LNL ¼ 250), δ ¼ 0.045 (corresponding to
point “1”, in the map described in Supplemental Material
[11]) leading to the formation of the asymmetric pulse is
shown in Fig. 1. The upper row shows 3D dynamics of
(a) IðZ; TÞ ¼ jUðZ; TÞj2 and (c) jUðZ;ΩÞj2. The middle
figure in the upper row depicts in the plane (Z, T) a function
ρ1ðZ; TÞ ¼ 0.5ϵI−3=2ð∂2 ffiffi

I
p

=∂T2Þ. In the area where ρ1 <
0.1 one can apply the Whitham quasiclassical approach
[17,19], to derive simplified model Eqs. (3) and (4) below.
The middle row in Fig. 1 shows at the points Z ¼ Zk
(corresponding to the lines marked with the index k in the
upper row figures) intensity of the pulse IðZk; TÞ (k ¼ 1, 2,
3, 4, 5) (black lines) and an instantaneous frequency (red
lines). The bottom row shows jUðZk;ΩÞj2 at the same
distances Zk. It is seen that the energy-containing part of the
pulse is moving to the negative T experiencing amplifica-
tion and shape change. The pulse trailing edge stays in the
lossy area, see spectrograms in Fig. S2 in Supplemental
Material [11].
Figure 2 depicts in the linear (left) and logarithmic (right)

scales three characteristic regions across the pulse at the
point Z ¼ Z3. Here, we change the scales to zoom the pulse
structure. In the zone I, at the leading edge, pulse shape is
close to parabola allowing to avoid wave breaking, similar
to the medium with constant gain [7], in the zone III (both
on the left and right), pulse has exponential asymptotic
determined by the linearized equation, similar to [6,9].
Zone II corresponds to the energy containing, nonparabolic
part of the asymmetric pulse wave form.
For high pulse powers, when the characteristic nonlinear

length LNL is much smaller than the dispersive length

Ldis: LNL=Ldis ¼ ϵ ≪ 1, it is customary to consider the so-
called quasiclassical limit (see, e.g., [17–22] and references
therein), when we can neglect time variations of the field
amplitude compared to phase time changes.
After applying the well-knownMadelung transformation

I ¼ jUj2 and V ¼ −ð∂=∂TÞ argðUÞ, [17,19] we get a redu-
ced model for I and V, that is a modification of the one-
dimensional shallow water equations [17–19,23,24]:

∂I
∂Z

¼ −
∂IV
∂T

− 2δIV; ð3Þ

∂V
∂Z

¼ −
∂

∂T
V2

2
−
1

ϵ

∂I
∂T

; ð4Þ

Here, we neglect the time derivatives S1 ¼
ð1=2 ffiffi

I
p Þð∂2 ffiffi

I
p

=∂T2Þ and S2 ¼ ðδ=2IÞð∂I=∂TÞ compared
to I=ϵ (see Supplemental Material [11] for details).
Evolution of the asymmetric pulse can be described by
the modified shallow water equations (3) and (4)
(ρ1 ¼ ϵS1=I and ρ2 ¼ ϵS2=I are both small compared to
unity) in the blue area shown in Fig. 1(b). Evidently, at the
pulse edges this simplified description is not valid [9]. This
is a direct analogy with self-similar parabolic solution
[5,6,9,16] described by the NLSE or NLSE with the
spectrally flat constant gain.
Without the second term in the right-hand side of

Eq. (3), Eqs. (3) and (4) have the symmetry: Ið−T; ZÞ ¼
IðT; ZÞ, Vð−T; ZÞ ¼ −VðT; ZÞ and any initially symmetric
distribution holds this property during the propagation.
However, this term breaks the symmetry, leading to the
transformation of even a symmetric initial distribution into
a skewed one during the evolution in Z. Note that in the
shallow water equations asymmetry caused by a sloping
beach (mathematically different from our case) was studied
in [25].
The wave breaking (gradient catastrophe) phenomenon

in Eq. (4) is determined by the sign of the chirp. When chirp
becomes negative at some point: ∂V=∂T < 0, wave break-
ing that manifests itself through the formation of a vertical
jump in the amplitude in the field V is inevitable [in the

FIG. 2. Rescaled details of the temporal shape of a pulse from
Figs. 1(d)–3. Here, jUðZ3; TÞj2=maxTðjUðZ3; TÞj2Þ is shown in
the normal (left figure) and logarithmic (right figure) scales.
TFWHM is the pulse full width at half maximum at Z ¼ Z3.
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framework of Eqs. (3) and (4)] [19]. A negative chirp can
only occur due to nonlinearity (see, e.g., [2] for details). The
self-phase-modulation (SMP)-induced frequency chirp is
negative for a convex function with ∂

2I=∂T2 > 0 and posi-
tive for a concave function with ∂

2I=∂T2 < 0. That is why
for a parabolic pulse shape (∂2I=∂T2 < 0) SMP-induced
frequency chirp is positive and no wave breaking occurs.
While Eqs. (3) and (4) are useful for understanding of the

wave breaking, is it important to examine their applicabil-
ity. Figure 1(b) shows the parameter ρ1ðZ; TÞ across the
pulse. The black color indicates an area of negative chirp
where the process of wave breaking is triggered. It is seen
that the chirp is negative at the leading edge of the pulse,
where ρ1 is not small anymore. Thus, Eqs. (3) and (4) are
invalid in the area of negative chirp. Terms neglected in
Eqs. (3) and (4), such as the temporal derivative S1, prevent
wave breaking in the full model given by Supplemental
Material, Eqs. (S3) and (S4) (see Ref. [11] for details).
The change of sign of the chirp at the leading edge of the
pulse from positive to negative that can be seen in Fig. 1(d)
(third figure) is similar to the parabolic pulse formation
in the medium with constant, spectrally flat gain [5,6,8],
where stabilization is observed at both edges of the pulse.
However, the considered asymmetric pulse features differ-
ent dynamics at the leading and trailing edges.
Namely, while the leading edge is “wave breaking free”

due to the parabolic shape, a buildup of the SMP-induced
negative chirp at the trailing edge of the asymmetric pulse
leads to the development of a wave breaking, with a
formation of high spectral peak in the vicinity of a zero
frequency, as shown in Fig. 3. Figure 3 continues Fig. 1 (all
parameters are the same) showing further propagation of
the asymmetric pulse, after it is formed. It is seen that at the
distance Z around 3.6 chirp becomes negative in the area

where ρ1 is small [Fig. 3(b)] and term with S1 cannot
stop wave breaking featuring initially the steepening of
the spectrum depicted in Fig. 3(d). Figure 4(b) shows a
nonmonotonic time-frequency dependence (negative chirp)
and start of the corresponding spectral oscillations at the
trailing (low power) edge of the pulse. Details of this effect
will be discussed elsewhere.
In more accurate models, the gain is bandwidth limited,

and its slope is linear only within a certain range of
frequencies. Additionally, amplification typically becomes
saturated at some level. While the inclusion of these
physical effects makes the master model less generic, they
combine to stabilize the propagation of nonlinear asym-
metric pulses, preventing wave breaking. Figure S4 in
Supplemental Material [11] shows that an asymmetric
nonlinear pulse can propagate without wave breaking,
adjusting its spectral and temporal shape to the gain profile,
similar to [4]. Details of the numerical modeling in this case
are provided in Supplemental Material [11].
In conclusion, a new (minimal) model describing optical

pulse propagation in a nonlinear dispersive amplifying
medium with a gain with linear spectral slope was
introduced. An analogy with the hydrodynamic shallow
water equations model is discussed. It is shown that
negative chirp plays the key role in wave breaking and
formation of a characteristic spectral optical shock waves in
this model system. Observed asymmetric optical pulses
capable to accumulate up to certain distance a large
nonlinear phase without wave breaking might be interesting
for various applications in high power systems.
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