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Abstract—We propose a modification of the conventional
perturbation-based approach of fiber nonlinearity compensation
that enables straight-forward implementation at the receiver and
meets feasible complexity requirements. We have developed a
model based on perturbation analysis of an inverse Manakov
problem, where we use the received signal as the initial condition
and solve Manakov equations in the reversed direction, effec-
tively implementing a perturbative digital backward propagation
enhanced by machine learning techniques. To determine model
coefficients we employ machine learning methods using a training
set of transmitted symbols. The proposed approach allowed us
to achieve 0.5 dB and 0.2 dB Q2-factor improvement for 2000
km transmission of 11x256 Gbit/s DP-16QAM signal compared to
chromatic dispersion equalization and one step per span two sam-
ples per symbol digital back-propagation technique, respectively.
We quantify the trade-off between performance and complexity.

Index Terms—optical communication system, nonlinear signal
distortions, Manakov equations, fiber nonlinearity compensation,
perturbation-based detection technique, machine learning.

I. INTRODUCTION

NONLINEAR transmission impairments are a fundamen-
tal limiting factor for further improving the capacity and

reach of modern fiber-optic communication systems. To over-
come this problem, a number of methods have been proposed,
such as digital back-propagation (DBP) [1], [2], Volterra
function-based methods [3], [4], perturbation pre-distortion
and post-equalization [5], [6], [7], phase conjugation methods
[8], nonlinear interference noise approach [9], machine learn-
ing methods [10], [11] (space limitation prevent an overview
of all important papers here, for more details, see e.g. [12],
[13], [14] and references therein). In particular, digital back-
propagation is a powerful tool for nonlinearity compensation
that is considered as a benchmark to evaluate performance of
other emerging techniques. However, there is always a trade-
off between performance improvement and implementation
complexity of the nonlinearity mitigation methods.

Practical implementation of nonlinearity compensation
methods in real-time processing can potentially be achieved
with the help of machine learning (ML) techniques, which
have developed rapidly in the field of optical communications
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in the past few years (see [10] and references therein). ML
can potentially enhance system performance while requiring
acceptable implementation complexity. In addition, ML-based
equalizers can be retrained on demand, which makes them suit-
able for dynamic reconfigurable transmission environments.

As a master model to describe nonlinear propagation of a
dual-polarized signal down an optical fiber, we use a well-
known system of Manakov equations [15]:

∂Ax/y

∂z
=

[
−α
2
− iβ2

2

∂2

∂t2
+ iγ

8

9

(
|Ax|2 + |Ay|2

)]
Ax/y,

(1)
where Ax/y(z, t) is the complex field envelopes for x- and y-
polarization, α, β2 and γ are attenuation, dispersion and Kerr
coefficients, respectively. This makes it possible to consider
the initial value problem for Manakov equations (1) using
launched in the fiber signal as initial condition in the form

Ax/y(z = 0, t) =
∑
k

ax/y[k]f(t− kT ), (2)

where ax/y[k] are complex transmitted symbols in x- and y-
polarization, respectively, k is a number of time slot, T is a
symbol interval, and f(t) is a waveform of a carrier pulse.

A first-order perturbation analysis of the problem (1)–(2)
yields a known expression for nonlinear three-symbol interac-
tions of different polarizations, which can be written as

bx[k] = ax[k] +
∑
m,n

Cmnax[k+m]ax[k+n]a
∗
x[k+m+n]

+
∑
m,n

Cmnax[k+m]ay[k+n]a
∗
y[k+m+n], (3)

where bx[k] are received complex symbols in x-polarization,
Cmn are complex perturbation coefficients, and a∗ denotes
complex conjugation of a [7], [16]. Nonlinear interactions
for y-polarization symbols by[k] can be obtained from (3)
by replacing x indices with y indices and vice versa. In
trivial cases there are analytic expressions to calculate Cmn
[17]; however, it is generally necessary to calculate thousands
of the perturbation coefficients given by multidimensional
overlapping integrals [18].

Recent works [7], [19] have proposed and studied receiver-
side perturbation-based machine learning equalizer for non-
linearity compensation in SDM and WDM systems, where
instead of a time-consuming numerical integration, robust
regression methods have been employed to calculate per-
turbation coefficients Cmn. Here, we revise this concept
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Fig. 1. Principle scheme of transmission link under investigation.

and propose a modified receiver-side perturbation-based post-
equalization approach (PPE) based on perturbation analysis of
inverse Manakov problem, when we consider the output signal
as initial condition similar to DBP concept. The key goal of
this work is to demonstrate how complexity of the proposed
method can be reduced to the level of practical applicability.

II. PERTURBATION-BASED POST EQUALIZATION

A first-order perturbation analysis of the problem (1)–(2)
for Manakov equations gives an analytical connection (3)
between transmitted and received symbols. Machine learning
techniques such as robust regression methods can be applied
to the known training set of symbols to identify perturba-
tion coefficients Cmn instead of cumbersome analytical or
resource-intensive numerical integration. However, to apply
model (3) on a receiver side for nonlinearity compensation,
it is necessary to know the transmitted symbols ax/y in
advance to calculate three-symbol products. An obvious way
to approximate these triplets is to replace transmitted symbols
by received ones [5], [7], [19], which introduces an additional
approximation error in the prediction of the model.

In this paper we propose a simple alternative approach.
Main new point of the proposed approach is to present solution
of the Manakov equations (or received signal in case of
experiment) at the receiver side after compensation of linear
effects by the the following expression

D−1
[
Ax/y(z=L, t)

]
≈
∑

k
bx/y[k]f(t− kT ), (4)

where D[ ] is a linear dispersion operator. We would like to
stress that bx/y[k] here have meaning of an expansion of the
received signal in the basis of f(t − kT ), rather then any
approximation of the input signal. It then becomes straightfor-
ward to perform first-order perturbation analysis of the inverse
Manakov problem, treating the signal in the form (4) as an
initial condition, inverting the sign of the fiber parameters in
(1), and taking reciprocal gain of the inline amplifiers (we
discuss in more detail this question in Appendices A and C).
Following this approach, one can derive:

ax[k] = Cbx[k] +
∑
m,n

C̃mnbx[k+m]bx[k+n]b
∗
x[k+m+n]

+
∑
m,n

C̃mnbx[k+m]by[k+n]b
∗
y[k+m+n]. (5)

To find coefficients C and C̃mn we used linear regression
model with a known training set of transmitted and received
symbols (for more details of the machine learning methods
that are used in the paper, see Appendix B).

At first glance, model (5) only slightly differs from the
original model (3). However, after computing coefficients,
we observed that perturbation kernels Cmn and C̃mn have
a perceptible difference. The main advantage of the model
(5) is the possibility of straightforward use of the received
symbols bx/y[k] for recovering transmitted symbols ax/y[k]
without additional approximations. Furthermore, we use ML
methods to find C̃mn and feed the model data distorted
by deterministic nonlinearity and stochastic nonlinear signal-
noise interactions during the training process. As a result, ob-
tained kernel C̃mn reflects both types of distortions. Analytical
estimation of Cmn, considering signal-noise interactions, can
be found in [20].

III. TRANSMISSION SYSTEM MODEL

A range of numerical modeling experiments were performed
to evaluate the performance of the proposed method. We
considered 11-channel 2000 km WDM transmission of a dual-
polarization 16QAM signal. We observed that further increase
of the WDM channel number has a negligible impact on the
central channel of interest (COI) performance. RRC pulses
with a roll-off factor of 0.1 at 32 GBaud and channel spacing
of 37.5 GHz have been used as data carriers. A lumped
amplification scheme with span length of 100 km and EDFA
noise figure of 4.5 dB was studied. At the receiver, after
demultiplexing WDM channels, we performed ideal chromatic
dispersion compensation (CDC) and matched filter sampling
and nonlinear impairments compensation for central channel.
Before the demodulation, we consistently applied the linear
equalizer, based on least mean square algorithm, to compen-
sate for the constellation phase deviation. We also assume an
ideal carrier phase and frequency recovery. The schematics of
a transmission link are depicted in Fig. 1 and all parameters
are summarized in Table I.

TABLE I
TRANSMISSION MODEL PARAMETERS

Parameter Value Parameter Value

Attenuation 0.2 dB/km COI Wavelength 1550 nm
Dispersion 17 ps/nm/km RRC Roll-off 0.1
Nonlinearity 1.4 1/W/km Symbol Rate 32 GBaud
Distance 20×100 km Channel Spacing 37.5 GHz
Noise Figure 4.5 dB Channel Data Rate* 256 Gbit/s

*including FEC overhead

Numerical simulation was performed using a standard
second-order symmetrical split-step Fourier method with over-
sampling factor of 64 and logarithmic step size selection [21].
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IV. RESULTS AND COMPLEXITY REDUCTION

The performance of the proposed scheme was evaluated by
comparing it with: (i) a previously studied perturbation-based
model (Forward PPE) [19], based on the scheme (3); (ii) a
linear phase shift equalizer (CDC), which recovers only the
phase of the received signal; and (iii) the single-carrier digital
back-propagation algorithm with a different number of steps
per span and oversampling factor of 2. Figure 2 shows the
BER of a central channel as a function of a launch power
per channel for different nonlinear impairments compensation
schemes without any restrictions on computational complexity.
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Fig. 2. Performance comparison of the proposed Inverse PPE scheme and
known nonlinearity compensation methods.

It can be noted that the proposed method provides perfor-
mance between DBP1 (one step per span, two samples per
symbol) and DBP2 (two steps per span, two samples per sym-
bol) levels, exceeding at the optimal power the performance of
linear equalizer (CDC) and forward approach (Forward PPE)
by 33% and 8% in terms of BER (0.5 dB and 0.1 dB in terms
of Q2-factor), respectively.

As mentioned above, for various nonlinearity compensation
methods, implementation complexity is an important practical
issue, along with performance improvement. Therefore, we
next estimated the total number of complex multiplications per
recovered symbol required for the application of the proposed
scheme with learned perturbation coefficients C̃mn.

A. Basic Complexity Estimation

Number of perturbation terms in (5) with summation con-
straint |m| + |n| 6 M is n1 = (M + 1)

2
+M2, where M

is a channel memory parameter corresponding to the number
of used neighboring symbols at each side of the symbol
under consideration. The total number of required complex
multiplications is given by Cbase = 3n1+1, showing quadratic
growth rate O

(
M2
)

that, from a practical point of view, can
make implementation non-acceptable.

Thus, the application of the proposed method in a straight-
forward manner is not sufficiently effective in terms of the
implementation complexity. In order to bring it closer to prac-
tical applicability, we reduce the computational complexity by
utilizing a combination of techniques capable decreasing the
number of required complex multiplications per symbol.

B. Perturbation Coefficients Selection

We start by reducing the number of terms in the right side of
the model (5). It was already observed that, in the perturbation
coefficients matrix in Fig. 3, coefficients with the largest values
are concentrated under hyperbolic curves |mn| < M [16],
[22]. The total number of these coefficients can be estimated
as n2 = 4

∑M
k=1b

M−1
k c + 4M + 1. Then, performing such

selection by importance and dropping negligible coefficients,
new complexity estimation is given by Cselection = 3n2 + 1,
scaling as O (M logM).
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Fig. 3. Learned perturbation matrix log10 |C̃mn|, |m|+ |n| 6 50. The black
internal line highlights the area where coefficients satisfy |mn| < 50.

C. Quantization of Perturbation Coefficients

Further complexity reduction can be achieved with vector
quantization of coefficients C̃mn. We combine multiple terms
with similar perturbation coefficients in the model (5) and
approximate these coefficients with a certain complex number
called centroid. It has been shown that quantization of C̃mn
can effectively reduce the number of multiplications without
any significant loss of performance [22], [23]. For this pur-
pose, we applied the k-means clustering algorithm. All the
perturbation coefficients are divided into a number of clusters
with corresponding centroids so as to minimize the inertia in
Euclidean norm (for more details see Appendix D).

Figure 4 shows the perturbation coefficients and clusters
centroids. Four major clusters stand out clearly here: left wing
with negative real part, right wing with positive real part, cen-
ter stem with mostly negative imaginary part, and coefficient
C0,0 is a singleton cluster that has the largest magnitude and
did not fit in the figure. This observation provides a good
heuristic estimate for the optimal number of quantization levels
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to be l = 3s + 1, s ∈ N, as we assign one centroid to C0,0

and divide the rest equally between wings and stem. In our
numerical experiments s ≈

⌊
M+14

16

⌋
was enough to greatly

reduce number of coefficients with less than 1% performance
loss. It should be noted that the centroids of the clusters
fully cover all the perturbation coefficients and the symmetry
properties are also preserved after quantization procedure. The
resulting computational complexity yields Cvq = 2n2 + l+ 1.

D. Allocation of Cyclic Buffer

If we consider one perturbation term for fixed m and n from
sum in (5) and factor out C̃mnbx[k+m] we will get

bx[k+n]b
∗
x[k+m+n] + by[k+n]b

∗
y[k+m+n]. (6)

Let us closely consider the set of indices Ik =
{(k+n, k+m+n) : |m| + |n| 6 M, |mn| < M}. It can be
seen that successive set Ik+1 has many common elements
with Ik. Assume that DSP unit has internal memory, that are
able to store intermediate results in cyclic buffer. In this case
only |Ik+1 \ Ik| = 2M + 1 new multiplications are needed
to compute the entire set of (6) with indices from Ik+1. This
gives us the final complexity estimate Cbuffer = n2+l+2M+2.

Applying the above-described techniques significantly re-
duces a number of coefficients C̃mn and a required number of
multiplication per symbol. For M = 70, we reduce the com-
putational complexity from 30,000 to 1750 multiplications,
which is more than one order of magnitude. Figure 5 shows the
dependence of the implementation complexity on a memory
parameter M for different complexity estimation scenarios.
It should be noted that, by reducing the computational com-
plexity, we degrade the accuracy of the model. However, we
verified that the accuracy can be restored by a slight increase of
the parameter M without a significant increase in complexity.
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Figure 6 shows the achieved Q2-factor improvement in
comparison with the linear equalizer CDC for the system
under consideration in terms of computational complexity. It
can be seen that complexity can be reduced by up to 1750
complex multiplications per symbol without any significant
degradation of performance. It should also be noted that 0.3
dB Q2-factor improvement compared with linear equalization
can be achieved using less then 600 complex multiplications.
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Fig. 6. (a) Received constellation diagram, (b) constellation diagram after
inverse PPE with M = 130, (c) Q2-factor increase with the given limit of
complex multiplications.

To compare the method’s complexity, we added DBP1 and
DBP2 complexity estimation to Fig. 6c, in terms of the total
number of complex multiplications per recovered symbol,
using the expression obtained by A. Napoli et al. in [2]

CDBP = Nsteps (CFDE + n) + CFDE,

CFDE =
N(log2N + 1)

N −ND + 1
n, (6)

where N is the size of FFT-block, ND is the number of
samples used to account for boundary dispersion effects, n
is the oversampling factor, and Nsteps is the total number
of computational steps. To estimate DBP complexity we use
following parameters: N = 1024, ND = 606, n = 2 and
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Nsteps = 20 and 40 for DBP1 and DBP2, respectively, which
leads to 1170 and 2285 complex multiplications, required by
DBP1 and DBP2 algorithms.

Related to hardware implementation, it should be noted that
the forward approach (3) is probably more robust against a
precision loss of the received sequence b[k] than the proposed
backward approach (5). Potentially, it can reduce performance
of (5) in case of the low fixed-point resolution of b[k].
However, this point requires a separate study.

V. CONCLUSIONS

In this work we revisited conventional perturbation-based
concept for fiber nonlinearity compensation and proposed
modified receiver-side approach with low implementation
complexity derived from an inverse Manakov problem. By
reformulating the underlying model and applying the ma-
chine learning techniques to determine model coefficients, the
proposed method more effectively deals with fiber nonlin-
earity consisting of deterministic nonlinear impairments and
stochastic nonlinear signal-noise interactions. We compared
the performance of the proposed method with a linear phase
equalizer that recovers the phase of the received signal and the
digital back propagation. In case of multi-channel transmis-
sion of 11x256 Gbit/s DP-16QAM signal, we demonstrated
0.5 dB and 0.2 dB Q2-factor improvement, compared with
linear equalization and one step per span and two samples
per symbol one-channel DBP, respectively. We showed that
implementation complexity can be significantly reduced by up
to 1750 complex multiplications by symbol without significant
degradation of performance.

APPENDIX A
DETAILS OF THE PERTURBATION MODEL

A. Basic theory
The perturbation theory has been discussed in many publi-

cations and is well-known. However, for the benefit of readers
who are not working in the field, this Appendix reviews
standard perturbation theory for the nonlinear Shrödinger
equation (NLSE). Generalization to the Manakov equations
is straightforward. The following notation for forward and
inverse Fourier transforms will be used below:

f̂ (ω) =

∫
f (t) eiωtdt, f (t) =

∫
dω

2π
f̂ (ω) e−iωt.

The NLSE for a complex envelope A (z, t) reads:

∂zA = −α
2
A− iβ2

2
∂2tA+ iγ |A|2A. (7)

We can rewrite (7) using the following well-known substitu-
tion: A (z, t) =

√
P0 exp

(
−αz

2

)
U (z, t) :

∂zU = −iβ2
2
∂2tU + iγP0e

−αz |U |2 U. (8)

Applying Fourier transform to (8), after straightforward ma-
nipulations using inverse transformation of Û for U in the
nonlinear term, we arrive at the expression:

∂zÛ = i
β2ω

2

2
Û + iγP0e

−αz
∫∫∫∫

dω1

2π

dω2

2π

dω3

2π
dt ×

× Ûω1
Ûω2

Û∗ω3
e−it(ω1+ω2−ω3−ω). (9)

To save space, we shall write Ûω in place of Û (z, ω) . Next
we introduce the change of variables to reduce the number of
integrations:

ω1 = ν1 + ν3,

ω2 = ν2 + ν3,

ω3 = ν1 + ν2 + ν3,

∣∣∣∣det(∂ω∂ν
)∣∣∣∣ = 1. (10)

Using substitution (10) and a definition of the Dirac delta
function, we can rewrite nonlinear term of (9):∫∫∫∫

dω1

2π

dω2

2π

dω3

2π
dt Ûω1

Ûω2
Û∗ω3

e−it(ω1+ω2−ω3−ω)

=

∫∫
dν1
2π

dν2
2π

Ûν1+ωÛν2+ωÛ
∗
ν1+ν2+ω.

Thus, we have the following standard form of (9) with symbols
ν reassigned back to ω:

∂zÛ = i
β2ω

2

2
Û + iγP0e

−αz
∫∫

dω1

2π

dω2

2π
×

× Ûω1+ωÛω2+ωÛ
∗
ω1+ω2+ω. (11)

Transform Û (z, ω) = exp
(
iβ2ω

2

2
z
)
û (z, ω) yields:

∂zû = iγP0e
−αz

∫∫
dω1

2π

dω2

2π
×

× ûω1+ωûω2+ωû
∗
ω1+ω2+ωe

−iβ2zω1ω2 . (12)

Integrating (12) by z from 0 to L, we can obtain the following:

û (L, ω)− û (0, ω) = iγP0

L∫
0

dze−αz
∫∫

dω1

2π

dω2

2π
× (13)

× ûω1+ωûω2+ωû
∗
ω1+ω2+ωe

−iβ2zω1ω2 .

Next we assume that initial conditions are

A (0, t) =
√
P0

∑
k
a[k]f (t− kT ) ,

Â (0, ω) =
√
P0f̂ (ω)

∑
k
a[k]eiωkT ,

where signal pulse shape f (t) satisfies Nyquist intersymbol
interference criterion. Therefore, provided the convolution the-
orem is used we can perform filtered sampling by multiplying
equation by matched filter f̂∗ (ω) in the frequency domain and
taking the inverse Fourier transformation:∫

dω

2π
f̂∗ (ω) û (0, ω) e−iωt =

∑
k
a[k]F (t− kT ) ,

where F (t) is an auto-correlation function of f(t). Doing
something similarly to the receiver side function u (L, t) may
be problematic because there is no way to represent it in such
a way as the transmitter side function u (0, t). Therefore, we
define received complex amplitudes b[k] as follows:

b[k] = G (kT ) , G (t) =

∫
dω

2π
f̂∗ (ω) û (L, ω) e−iωt, k ∈ Z.

(14)
Let us rewrite (13) after filter sampling:

G (t)−
∑

k
a[k]F (t− kT ) = iγP0

L∫
0

dz e−αz×

×
∫∫∫

dω

2π

dω1

2π

dω2

2π
f̂∗
ωûω1+ωûω2+ωû

∗
ω1+ω2+ωe

−iβ2zω1ω2−iωt.
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After substituting t = kT we derive a discrete model:

b[k] = a[k] + iγP0

L∫
0

dz e−αz
∫∫∫

dω

2π

dω1

2π

dω2

2π
× (15)

× f̂∗ωûω1+ωûω2+ωû
∗
ω1+ω2+ωe

−iβ2zω1ω2−iωkT .

To apply perturbation theory and obtain first-order approxima-
tion, we shall use û (0, ω) instead of û (z, ω) in the right-hand
side of the (15), because û (0, ω) is the solution of (12) in case
of γ = 0:

f̂∗ωûω1+ωûω2+ωû
∗
ω1+ω2+ωe

−iβ2ω1ω2z−iωkT ≈
≈
∑
p,q,r

a[p] a[q] a∗[r]f̂∗ω f̂ω1+ω f̂ω2+ω f̂
∗
ω1+ω2+ω×

×e−iβ2ω1ω2z+iω1(p−r)T+iω2(q−r)T+iω(p+q−r−k)T =

using the indices shift p = k+n, q = k+m, r = k+h we get

=
∑
m,h,n

a[k+m]a[k+n]a∗[k+h]f̂∗ω f̂ω1+ω f̂ω2+ω f̂
∗
ω1+ω2+ω×

×e−iβ2ω1ω2z+iω1(n−h)T+iω2(m−h)T+iω(m+n−h)T .

Finally, we can write

b[k] = a[k] +
∑
m,h,n

Cm,h,na[k+m]a[k+n]a∗[k+h], (16)

where

Cm,h,n = iγP0

L∫
0

dze−αz
∫∫∫

dω

2π

dω1

2π

dω2

2π
f̂∗ω f̂ω1+ω f̂ω2+ω×

×f̂∗ω1+ω2+ωe
−iβ2ω1ω2z+iω1(n−h)T+iω2(m−h)T+iω(m+n−h)T .

In order to reduce complexity of the model, it might be useful
to consider the “pulse-matching condition,” which implies h =
m + n. This simplification can be explained by the fact that
almost all the “energy” of the three-dimensional tensor Cm,h,n
is concentrated at a single matrix slice Cm,m+n,n. As a part
of the study, we verified that the performance efficiency of the
proposed and the original methods is provided mainly by the
slice Cm,m+n,n. However, the problem of usage of coefficients
from other slices requires a separate investigation. Thereby, we
have

b[k] = a[k] +
∑
m,n

Cm,na[k+m]a[k+n]a∗[k+m+n], (17)

where

Cm,n = iγP0

L∫
0

dze−αz
∫∫∫

dω

2π

dω1

2π

dω2

2π
×

× f̂∗ω f̂ω1+ω f̂ω2+ω f̂
∗
ω1+ω2+ωe

−iβ2ω1ω2z−iω1mT−iω2nT .

There is a trivial extension of the obtained model (17) for
the case of a multispan transmission link with inline amplifiers
and dual-polarized signal resulting in model (3).

Considering that the received signal Ax/y(L, t) after com-
pensation of linear effects can be presented by the form (4) it
is possible to perform first-order perturbation analysis of the
inverse Manakov problem, treating the received signal in the

form (4) as the initial conditions, inverting the sign of the fiber
parameters in Manakov equations (1), and taking the reciprocal
gain of the inline amplifiers. Following this technique, one
can obtain model (5) and modified analytic expressions of the
perturbation coefficients C̃mn.

B. Machine Learning Methods

The perturbation model equation (5) has a form of weighted
sum and the linear regression model can be applied to obtain
the perturbation coefficients C̃mn. Using known training se-
quences of transmitted a[k] and received b[k] symbols, one
can construct system Xβ = y, where

X =


...

...
b[k] . . . b[k+m]b[k+n]b∗[k+m+n] . . .

...
...

 , (18)

β =
[
C . . . C̃mn . . .

]>
, y =

[
. . . a[k] . . .

]>
. (19)

This system can be solved as an ordinary least squares (OLS)
problem with a mean squared error (MSE) objective function:

MSE(β) =
1

N
‖Xβ − y‖22 =

1

N

N∑
k=1

|Xkβ − yk|2 . (20)

One way to solve the OLS problem is to use the first Gauss
transformation X†Xβ = X†y, where X† is the Hermitian
conjugation of X, and singular value decomposition to invert
matrix X†X. The solution is then written as

β =
(
X†X

)−1
X†y. (21)

It is worth noting that, in order to get correct evaluation met-
rics, one should use another known sequence of data that was
not involved in the training process. In this paper, sample size
for training and testing sets was 216 for each polarization. This
size was chosen based on two requirements: to provide enough
samples for the convergence of the optimization method, and
to obtain accurate estimation of the BER.

C. Approximation of the received signal

Developed approach is based on presenting the received
signal (after compensation of linear distortions) in the form:

D−1[Ax/y(z=L, t)] ≈
∑

k
bx/y[k]f(t− kT ). (22)

Similar expansion is satisfied by default at the transmitter
side, because we generate it in this form. We would like
to stress that this presentation should not be considered as
a recovery of the transmitted data, but rather as a sampling
and representation of the received signal in a specific basis. In
case of the complete orthogonal basis formed by f(t − kT ),
any practical bandwidth limited function can be re-presented
in this way. However, the same approximate approach can
be also used when a carrier pulse f(t) is well localised
within a symbol slot and its overlap with pulses from other
time slots is minimal. To verify applicability of the proposed
approach, we measured a level of inaccuracy by comparison
with direct numerical modeling. We performed numerical
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experiments with ideal DBP (the same number of steps as for
forward propagation and the same oversampling factor) in two
scenarios. The first is using the received signal as is for initial
data. The second is using a digitally regenerated signal by
(22), adding the required level of chromatic dispersion. After
DBP we compared symbols ax/y[k] with recovered symbols
ax/y[k].

Figure 7 shows that, in terms of error vector magnitude
(EVM), there is no significant difference between ideal DBP
with original signal and regenerated one. Basing on this, we
conclude that it is reasonable to perform perturbation analysis
of the inverse Manakov problem, treating regeneration of the
received signal as the initial condition and inverting the sign
of the fiber parameters in Manakov equations (1).
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Fig. 7. Comparison of ideal one-channel DBP with raw received and digitally
regenerated signal.

D. Used Metrics

Inertia(µ;X) =
1

N

N∑
i=1

min
k=1,...,K

|Xi − µk|2 ,

where X is the data matrix, each line of which corresponds
to one point, and µ is the cluster centroid matrix.

EVM [dB] = 10 log10

1
N

N∑
k=1

|a[k]− b[k]|2

1
M

M∑
k=1

|qk|2
,

where a[k], b[k] are transmitted and received symbols, and qk
is the ideal constellation points of chosen M -ary modulation.

Q2 [dB] = 20 log10

[√
10 erfc−1

(
8BER

3

)]
.
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