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Abstract—The nonlinear Schrödinger equation (NLSE) is often
used as a master path-average model for fiber-optic links to
analyse fundamental properties of such nonlinear communication
channels. Transmission of signal in nonlinear channels is con-
ceptually different from linear communications. We use here the
NLSE channel model to explain and illustrate some new unusual
features introduced by nonlinearity. In general, NLSE describes
the co-existence of dispersive (continuous) waves and localised
(here in time) waves - soliton pulses. The nonlinear Fourier
transform method allows one to compute for any given tem-
poral signal the so-called nonlinear spectrum, that defines both
continuous spectrum (analogue to conventional Fourier spectral
presentation) and solitonic components. Nonlinear spectrum re-
mains invariant during signal evolution in the NLSE channel. We
examine conventional orthogonal frequency-division multiplexing
(OFDM) and wavelength-division multiplexing (WDM) return-to-
zero signals and demonstrate that both signals at certain power
levels have soliton component. We would like to stress that this
effect is completely different from the soliton communications
studied in the past. Applying Zakharov-Shabat spectral problem
[1] to a single WDM or OFDM symbol with multiple sub-carriers
we quantify the effect of statistical occurrence of discrete eigen-
values in such an information-bearing optical signal. Moreover,
we observe that at signal powers optimal for transmission an
OFDM symbol with high probability has a soliton component.

Index Terms—Nonlinear optics; Communication system non-
linearities; Optical fiber communication; Optical solitons; Wave-
length division multiplexing; Subcarrier multiplexing; Simula-
tion; Transmission line theory; Signal analysis.

I. INTRODUCTION

NONLINEAR effects in optical fiber limit performance of
modern optical communication systems at high signal

powers. This defines a crucial practical difference between
nonlinear and linear communication channels, such as e.g.
classical linear additive white Gaussian noise (AWGN) chan-
nel, where capacity can be improved by increasing signal
power and, respectively, signal-to-noise ratio (SNR). Note,
that most of the conventional communication methods and
techniques have been designed and developed for linear com-
munication channels. Therefore, it comes as no surprise that
nonlinearity imposes undesirable signal distortions when these
(linear) communication methods are used in nonlinear fiber
channels. In recent years, considerable efforts have been made
to reduce the negative impact of nonlinear fiber effects using
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various compensation methods (see e.g. for more detail [2]–
[9] and references therein). However, channel nonlinearity
potentially can also offer new interesting and unconventional
techniques, such as e.g. nonlinear Fourier transform (see e.g.
[10] and references therein). Moreover, it is not yet even
fully understood whether widely observed high SNR (more
precisely, high signal power) limits is a fundamental feature of
the nonlinear channels or it is rather a consequence of using
linear approaches in such channels. Overall, it is important
to develop better understanding of the basic properties of
nonlinear communication channels.

We will use here a particular model of the nonlinear
communication channel that allows us to study in more detail
impact of nonlinearity on transmission of conventional signals.
Namely, we use as master model the nonlinear Schrödinger
equation (NLSE) that under certain conditions and within
some limits describes the propagation of a signal down an
optical fiber (see e.g. [10]–[15] and discussions therein).

i
∂Q

∂Z
− β2

2

∂2Q

∂T 2
+ γ|Q|2Q = 0. (1)

Here Q is a complex envelope field that describes the optical
signal, Z is a distance (e.g. in km), T is time (e.g. in ps), β2
(in ps2/km) is the group velocity dispersion parameter and
γ (in W−1km−1) is the nonlinear Kerr coefficient. Again,
we would like to stress that we consider just a model and
realistic fiber channels have more complex basic equations.
Applicability of the NLSE in the fiber-optic communications
has been discussed in a number of previous works (see e.g.
[10], [12], [13], [15]. We use here the NLSE-channel to
illustrate a particular new feature introduced by nonlinearity in
signal analysis. It is convenient to introduce the characteristic
time scale, e.g. carrier pulse width or symbol interval T0,
dispersion length LD = T 2

0 /|β2| and characteristic power
P0 = 1/(γLD) to define corresponding non-dimensional
variables t = T/T0, z = Z/LD and q = Q/

√
P0 in which the

dimensionless nonlinear Schrödinger equation reads:

i
∂q

∂z
+

1

2

∂2q

∂t2
+ |q|2q = 0. (2)

In the context of fiber-optic, we consider here the case of
the so-called anomalous dispersion β2 < 0, when general
solutions of this equation can include both the dispersive
(linear-like) waves and the coherent localised (in time) struc-
tures — solitons. Any initial signal evolving according to this
master model can be presented as a nonlinear superposition of
dispersive waves and soliton(s).

In general, nonlinear partial differential equations are diffi-
cult to solve, not many analytical solutions are possible, and
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numerical modelling is the most typical way to analyse them.
However, the nonlinear Schrödinger equation (2) belongs to
the class of the so-called integrable nonlinear partial differen-
tial equations. In 1972, Zakharov and Shabat demonstrated
that the NLSE can be integrated by the inverse scattering
transform (IST) method [1], also known nowadays as the
nonlinear Fourier transform (NFT). Direct NFT corresponds
to solving the Zakharov-Shabat spectral problem (ZSSP). We
consider here ZSSP problem for the initial field q(t, z = 0):{

−∂tψ1 + q(t, 0)ψ2 = iξψ1

∂tψ2 + q∗(t, 0)ψ1 = iξψ2

(3)

where q(t, 0) = q0(t) is the ”potential” — initial distribution
of the signal to be transmitted, ψ1,2 is a vector eigenfunction
and ξ = λ + iη — spectral parameter defined on a complex
plane.

In the case of anomalous dispersion (β2 < 0) the initial
localized in time signal distribution q(t, z = 0) might have
both continuous and discrete spectrum of the system (3). The
continuous spectrum r(λ) fills the real axis of the ξ-plane
and corresponds to the dispersive wave component, being the
direct analogue to Fourier transform and converging into it
at low signal powers. The discrete spectrum eigenvalues ξn,
located in the upper complex half-plane (η > 0), correspond
to soliton solutions of the NLSE. The discrete spectrum
consists of the set of complex-valued eigenvalues ξn having a
positive imaginary part together with complex-valued norming
constants rn. Solution of the ZSSP gives full description of
the nonlinear spectrum. Parameters of the nonlinear spectrum
are changed in a trivial way during evolution along the NLSE
channel, allowing one to determine signal q(t, z) at an arbitrary
distance from initial distribution at z = 0. In this work we
calculate nonlinear spectrum for a range of conventional initial
signals to determine probability of having discrete (soliton)
components in such signals. In case soliton component is
present in the initial signal it will stay during propagation in
the NLSE channel.

II. METHODOLOGY OF COMPUTATION OF NONLINEAR
SPECTRA

In this section we describe methodology used to numerically
calculate nonlinear spectra of standard telecom signals. To test
the accuracy of the numerical codes one can use a number of
exact analytical results with known nonlinear spectrum, see for
detail e.g. [16]–[18]. It is useful to recall an important result
for the number of discrete eigenvalues (solitons) containing in
a rectangular pulse without phase modulation:

N = int[1/2 + L1(q)/π], (4)

where int[...] means integer part of the expression and L1

norm is defined as L1(q) =
∫ +∞
−∞ |q(t)|dt. However, for more

complex signals, there is no similar exact analytical results and
numerical modelling has to be used to solve Zakharov-Shabat
spectral problem (3) to determine the nonlinear spectrum.

In this paper we focus on the total number of the discrete
eigenvalues in a given signal rather than on specific features of
the eigenvalue parameters. Therefore, we apply robust methods

that determine number of poles in the complex plane basing
on the Cauchy theorem (see, e.g. [19]), which associates
the number of zeros with a complete phase shift of one
of the scattering coefficient in the Zakharov-Shabat spectral
problem (3) (for details see [19]–[21]):

N =
1

2π
Arg(a(ξ))

∣∣+∞
−∞ , (5)

where the spectral parameter ξ takes values from −∞ to
+∞ on the real axe. A similar approach also can be used
to determine the exact location of the discrete eigenvalues,
see for detail [21].

Here we study the existence of a soliton component in
two standard return-to-zero optical signals: (i) orthogonal
frequency-division multiplexing (OFDM) with multiple carrier
frequencies and (ii) wavelength-division multiplexing (WDM)
where different optical carriers transfer data in a single optical
fiber by using different wavelengths. For both formats, without
loss of generality, we focus here on two types of popular
modulation formats: quadrature amplitude modulation (QAM)
and phase-shift keying (PSK) and consider a single OFDM and
WDM symbol (i.e. assuming burst mode transmission with
well separated symbols). An information-bearing signal can
be treated as a random process in which signal characteristics
experience statistical variations that depend on modulation
formats and coding [22]. For any such statistical realisation
of a return-to-zero signal we can compute nonlinear spectrum
using the ZSSP.

As we already mentioned above, the main results of this
work do not require the calculation of the signal propagation
along the z coordinate. We want to emphasize this non-
trivial fact. The existence of solitons depends only on the
initial distribution of the field, and the number of solitons
does not change in the process of propagation. Moreover,
the accompanying characteristics of the discrete and contin-
uous spectrum (so-called scattering data) change in a trivial
way [10]. The propagation dynamics of the field is considered
in this paper only to assess the system performance using
the parameter Q2-factor, which measures the quality of an
transmission signal. The Q2-factor value is extrapolated from
the conventional error vector magnitude (EVM) function [23]
as Q2 = 1/EVM2 using transmission of 214 symbols (OFDM
or WDM) per run. At the receiver, the chromatic dispersion
was fully compensated and an algorithm based on the 4th-
power Viterbi-Viterbi method was used for phase estimation.

III. SOLITON CONTENT IN THE CONVENTIONAL OPTICAL
SIGNALS

Now we analyse the probability of occurrence of solitons in
the OFDM and WDM symbol defined as the ratio of the num-
ber of symbols containing discrete eigenvalues (corresponding
to solitons) of the Zakharov-Shabat spectral problem to the
total number of the examined symbols (statistics based on
random input data). In other words, we are not interested
in the exact number of solitons in the signal, but rather in
their existence in the given symbol. Our goal here is to
demonstrate that appearance of solitons in the standard optical
signals is not something exotic, but rather is a general situation
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Fig. 1. Average number of occurred discrete values (solitons) versus the L1

norm for OFDM signals with 128 subcarriers and QPSK, 16-QAM, 64-QAM
and 1024-QAM modulations. The threshold for appearance of the soliton
in the non-modulated rectangular pulse, calculated using the formula (4), is
L1 = 1.57 and lies on the left well outside the boundaries of the graph

that can occur even at practically used power levels. We did
verify that number of solitons does not depend on increase
of the computational grid and the FFT size (temporal signal
discretization). For numerical simulations we use the following
typical fibre parameters: group velocity dispersion parameter
β2 = −21.5 (in ps2/km) and the nonlinear Kerr coefficient
γ = 1.27 (in W−1km−1).

A. OFDM signal

First, consider the OFDM signal, that presents a sum of
independent sub-carriers:

s(t) =
M−1∑
k=0

Xke
i2πkt/T , 0 ≤ t < T , (6)

here T be a symbol interval, M is the number of subcarriers
(each corresponds to a frequency in the Fourier transform) and
Xk corresponds to digital data. In practice, the full number of
subcarriers is 2p to use FFT algorithm. In this paper the full
FFT size is 1024 and number of sub-carriers M is changing
from 128 to 1024. In the real world units, we examine OFDM
symbol with 10 ns symbol duration and QPSK, 16-, 64- or
1024-QAM modulation. Average signal power varies (in the
dimension units) from −21 to −7 dBm.

In our analysis the varying parameters and characteristics
are: modulation type, L1 norm or average power Pave (which
corresponds to L2 norm) and number of sub-carriers M . We
examine the probability of solitons occurrence depends on
these parameters. For each fixed parameter set we accumulate
statistics on the number of realisations by varying input
digital data. Each graph point corresponds to 200 statistical
measurements.

Figure 1 shows the probability of the occurrence of solitons
in OFDM symbol with 128 subcarriers versus the L1 norm

Fig. 2. Average number of solitons embedded into OFDM symbol with 128
sub-carriers and QPSK, 16-, 64- and 1024-QAM modulations versus average
signal power.

Fig. 3. Average number of solitons embedded into OFDM symbol with 1024
subcarriers and QPSK, 16-, 64- and 1024-QAM modulations versus average
signal power.

value for several modulation formats. This and subsequent
results show that the probability of the soliton occurrence for
signals with the same L1 norm or Pave value slightly increases
with the number of constellation points in the corresponding
modulation format and saturates at high number of levels.

One can see the same trend in Fig. 2 and 3. These figures
demonstrate that with an increase of the order of the con-
stellation diagram (therefore number of bits of information
encoded in one symbol) the required average signal power for
the existence of solitons decreases. This fact is clearly visible
when comparing QPSK and higher-order modulation formats.

Figures 2 and 3 illustrate how the probability of occurrence
of the soliton content in the OFDM signal is growing with
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Fig. 4. Average number of solitons embedded into OFDM symbol with 16-
QAM modulations versus average signal power per one subcarrier.

the increase of the average power Pave. The graphs indicate
that the power required for the existence of solitons increases
with the number of subcarriers. This effect can be understood
from Fig. 4, which shows a similar probability, but versus the
average power divided by total number of subcarriers. It is
seen that the probability of soliton occurrence is determined
by the power density (power per subcarrier). We observe
a similar effect for other types of modulation. The specific
average power range per subcarrier channel within which
soliton occurrence changes from being a rare event to highly
probable common situation is approximately from −42 dBm
to −37 dBm. Based on this observation, we can predict the
occurrence threshold for other numbers of subcarriers.
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Fig. 5. The dependence of the Q2-factor on the average input power per one
subcarrier (below) or total power (above) for the OFDM signal with 16-QAM,
1024 subcarriers and 10 ns symbol duration.

As expected, for a complex signal, the level of L1 and
L2 norms (and hence Pave), at which soliton component
appears in the signal, is higher than for a simple rectangular
signal. This is consistent with the criteria (15) discussed in
the Appendix B, which can also be used for a estimate of the
threshold.

The interesting observation for OFDM signal is that it does
not require too high signal power, for soliton component to
become an inherent part of the OFDM symbol. For some
parameter sets the soliton component arises at rather practical
levels of a signal power conventional for telecom applications.
To illustrate this fact, a simulation of a 1000 km and 2000 km
transmission links for the NLSE channel, with noise estimated
from the ideal distributed Raman amplification scheme with
continuous amplified spontaneous emission generation (see
[10], [14] for detail), was performed. The transmission link
characteristics were specified above in Section III. As an input,
we used OFDM signal with 16-QAM, 1024 subcarriers and
10 ns symbol duration (214 OFDM symbols per run). Figure 5
shows the dependence of the Q2-factor on the average input
power per one subcarrier (below) and on total average power
of the symbol (above) for such system. The results demonstrate
that at the power levels optimal for transmission (average
power around −37 dBm) there is a probability close to one to
have a soliton component in signals of this type, according to
Fig. 4.

B. WDM signal with return-to-zero carrier pulse

In this section we examine occurrence of solitons in conven-
tional WDM signals with return-to-zero carrier pulse. A single
WDM symbol has a form similar to OFDM signal considered
in previous section:

s(t) =

M∑
k=1

Cke
iωktf(t), 0 ≤ t < T , (7)

where M is a number of WDM channels, ωk is a carrier
frequency of the k-th channel, Ck corresponds to the digital
data in k-th channel and T is a symbol interval. f(t) is a
waveform of a return-to-zero carrier pulse, which in this work,
without loss of generality, is defined (in the normalized form)
as

f(t) =


1

2

[
1− cos

(
4πt

T

)]
, 0 ≤ t ≤ T

4
or

3T

4
≤ t ≤ T

1,
T

4
< t <

3T

4
(8)

Similar to the OFDM signal, we consider QPSK, 16-QAM,
64-QAM and 1024-QAM modulation formats. In the anal-
ysis, we use the following standard WDM parameters (in
dimensional variables): 100 ps symbol duration and 25 GHz
channel spacing. For QPSK, 16-QAM, 64-QAM and 1024-
QAM modulations these parameters give a channel bit rate
of 20, 40, 60 and 100 Gbit/s per polarization and spectral
efficiency of 1.6, 3.2, 4.8, 8 bits/s/Hz, respectively.

As in previous section we examine single isolated return-to-
zero WDM symbol and analyse the probability of the soliton
occurrence in the signal depending on power, modulation type
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Fig. 6. Probability of occurrence of discrete eigenvalues (solitons) versus
average power per channel for WDM signals with 16-QAM modulation and
9, 15, 31 and 51 channels.

and number of WDM channels. We accumulated statistics for
different sets of WDM symbol parameters by varying Ck and
each point on the graphs below corresponds to 200 statistical
realisations. We would like to note that in the following figures
we use the average power per channel. An increase in the
number of channels, the interval in which transition from lower
probability of having solitons to almost certain presence of
soliton content in the symbol slightly decreases with increasing
number of channels. Note that corresponding intervals for
the total power obviously increases with growing number of
channels. A similar tendency is observed for other modulation
formats (QPSK, 64-QAM, 1024-QAM).

Figure 7 shows how the probability of the soliton occurrence
in a WDM signal with thirteen optical channels, as a function
of the average signal power Pave per channel. Here, similar
to OFDM case the transition from the regime with low prob-
ability of soliton content in WDM symbols, to the situation
when solitons are highly probable part of the signal, occurs in
a narrow interval of 3 − 4 dBm for 16-QAM, 64-QAM, and
1024-QAM and 1 dBm for QPSK.

There are many similarities between WDM and OFDM
cases: Fig. 7 illustrates that for WDM signals with QPSK
modulation it requires more average power per channel for the
occurrence of soliton component than for other (high-order)
modulation formats. For example, with 6 dBm in QPSK-
modulated symbols, the probability of soliton existence is
2.5%, while for 16-, 64- and 1024-QAM, the probability is
almost 100%. The 50% probability of the soliton occurrence in
symbols is achieved at 6.46 dBm for QPSK, 4.47 dBm for 16-
QAM, 3.88 dBm for 64-QAM and 3.94 dBm for 1024-QAM.
We would like to stress that for smaller powers (down to the
power defined in the criteria (15) in the Appendix B), there is
also a (rare) probability of occurrence of discrete eigenvalues
in nonlinear spectrum.

For WDM signals, optimal transmission powers are lower

Fig. 7. Probability of occurrence of discrete eigenvalues (solitons) embedded
into conventional WDM symbol with 13 channels and QPSK, 16-QAM, 64-
QAM and 1024-QAM modulations versus average signal power per channel.

Fig. 8. The dependence of the Q2-factor on the average input power per
channel for the WDM signal with 16-QAM modulation, 11 WDM channels
and 100 ps symbol duration.

than level of powers where all symbols have solitons. We
performed a similar simulation of the a 1000 km transmission
links. The transmission link characteristics (including noise)
were specified above in Section III. As an input, we consider
WDM signal with 16-QAM, 11 optical channels with 25
GHz channel spacing and 100 ps symbol duration (214 WDM
symbols per run). Fig. 8 depicts the dependence of the Q2-
factor on the average input power per spectral channel. It is
seen that at optimal power levels for transmission, either there
are no solitons or solitons with very low probability in the
considered WDM signals. However, we did not consider low
probability events in this work. Evidently, results for soliton
content occurrence for WDM depend on the carrier pulse
shape and other specific signal features.

IV. CONCLUSIONS

Nonlinear channels have properties rather different from
linear communication ones. Here we use a particular, albeit
important example of the NLSE-channel to illustrate that
soliton components might be an inherent part of the conven-
tional signals transmitted in such communication channel. The
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presence of soliton component embedded into the conventional
OFDM symbol potentially can impact the transmission of
the combined signal. Focus of this paper is on attracting
attention to this fact rather then a comprehensive analysis of
its consequences for signal coding, modulation and process-
ing and its potential to improve the performance of optical
communication systems. We anticipate that similar effects
will feature in the integrable nonlinear channel model taking
into account polarisations [24], [25]. Additional analysis is
required to understand in what way the presence of a soliton
component in conventional signals affects transmission and
how it can be exploited in practice. Note that even for quasi-
linear signal transmission statistical fluctuations in the plane
(z, t) that occur due to information content of a signal might
affect quality of transmission, see e.g. [26].

Conventional signal processing and modulation methods
have been designed and developed for linear communication
channels. Considering the NLSE-channel we have demon-
strated here that a traditional OFDM signal statistically con-
tains soliton components at powers corresponding to low-
est BER. This observation indicates that transmission in a
nonlinear channel substantially changes the whole paradigm
of signal modulation and processing. Our results show that
NFT analysis might be useful not only to special inherently
soliton-based systems and signals [13], but also for conven-
tional communication formats that traditionally are not linked
to the soliton concept and techniques. We believe that our
results indicate that application of the detection and processing
methods developed for linear channels might be not optimal
for nonlinear communication channels.

The results thus obtained are compatible with criteria (15)
and show that both WDM and OFDM signals contain solitons
upon reaching a certain power levels. Despite the fact that at
optimal powers in conventional WDM signals solitons do not
occur or appear rarely, we can use NFT for such systems to
account for nonlinear distortions.

Considered NFT processing of signals require efficient
numerical algorithms such as, e.g. [27]–[29]. These methods
will be useful for application of NFT in other areas beyond
optical communications.
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APPENDIX A
EXAMPLES OF DISCRETE SPECTRA OF PARTICULAR SIGNAL

A. Hyperbolic secant pulse

One of the known exact solutions of ZSSP was found by
Satsuma and Yajima in 1974 [30]: q(t, 0) = A sech(t). Here
amplitude A is a real positive number. The discrete spectrum
of the problem (3) is determined by the following expression:

ξn = i

(
A+

1

2
− n

)
, (9)

where n is a positive integer and always n < A+ 1
2 to satisfy

the condition that all eigenvalues are in the upper complex
half-plane.

B. Rectangular pulse
Other well-known analytical solution is a rectangular pulse

q(t, 0) =

{
A, 0 ≤ t ≤ 1,

0, otherwise.
(10)

New eigenvalue appears whenever A = π(n− 1
2 ), where n

is a positive integer. The total number of discrete eigenvalues
can be calculated by the formula

N = int[1/2 + L1(q)/π], (11)

int[...] means integer part of the expression. To characterize
the signals, we use the (non-dimensional) signal L1 and L2

norms defined by the following expressions:

L1(q) =

∫ +∞

−∞
|q(t)|dt, (12)

L2(q) =

∫ +∞

−∞
|q(t)|2dt. (13)

Evidently, the L2 norm corresponds to the signal energy.
Average signal power is linked to the L2 norm (in dimension
units) as following: Pave = L2/T .

C. General criteria of the existence of a discrete spectrum
The exact condition for the existence of discrete eigenvalues

was found in 2003 by Klaus and Shaw [31]. They showed that
for initial complex distribution q(t, 0) the Zakharov-Shabat
system (3) has no discrete eigenvalues when:

L1(q(t, 0)) ≤
π

2
.

This criterion is strictly related to the L1 norm, however, it
can be extended to the L2 norm. Using the definition of the
L1 and L2 norms, as well as a standard inequality for the
arithmetic and geometric means, we can derive for the signals
considered at the finite intervals T :

L2 >
π2

4T
(14)

which we can rewrite in real world units as

Pave >
|β2|π2

4γT 2
, (15)

where Pave is a average signal power and T — symbol inter-
val. Figure 9 shows how criteria (15) depends on the symbol
interval. One can see that with a decrease of the symbol
interval, the average power at which discrete eigenvalues can
appear is dramatically increasing. The graph also shows two
levels: 100 ps and 10 ns, which we examined in this work.
For these two cases, the average power levels, defined by the
formula (15), are at 6 dBm and −30 dBm, respectively.

Finally, Fig. 10 depicts a typical example of the discrete
nonlinear spectrum of particular OFDM signal with 128
subcarriers, QPSK modulation and an average signal power
of −16 dBm and a WDM signal with 13 channels, QPSK
modulation and average power per channel of 6.35 dBm.
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Fig. 9. General criteria of the existence of a discrete spectrum defined by the
formula (15).

Fig. 10. Example of the nonlinear discrete spectrum for OFDM signal with
QPSK modulation, 128 subcarriers and an average signal power of −16 dBm
and WDM signal with QPSK modulation, 13 channels and average power per
channel of 6.35 dBm.
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