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Using the cubic Ginzburg-Landau equation as an example, we demonstrate how the inverse scattering
transform can be applied to characterize coherent structures in dissipative nonlinear systems. Using this
approach one can reduce the number of the effective degrees of freedom in the system when the dynamic is
dominated by the coherent structures, even if they are embedded in the dispersive waves and demonstrate
unstable behavior.
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The conventional Fourier transform is one the most
holistic mathematical methods widely used in science and
engineering. The Fourier transform has two key important
functions that make it a universal engineering tool. First, it
can make it possible to present objects under study in a
simpler form, for example, an irregular temporal waveform
as a set of several spectral harmonics. Second, it might
facilitate analysis, for example, in some linear equations,
where spectral harmonics evolve independent of each
other and in a simple manner, enabling the straightforward
description of otherwise complex dynamics in the Fourier
domain.
Something similar is available for certain classes of the

nonlinear equations integrable by the inverse scattering
transform (IST) [1–6], also known as the nonlinear Fourier
transform (NFT). In particular, the nonlinear Schrödinger
equation (NLSE) is a well known and practically important
example of such integrable equations [2]:

i
∂U
∂z þ 1

2

∂2U
∂t2 þ jUj2U ¼ 0: ð1Þ

Here, we consider only the focusing case (anomalous
dispersion in the context of fiber-optic applications) and
solutions Uðz; tÞ decaying at t → �∞ for all z. The NLS
equation has a remarkable property that links its solutions
to the spectrum of a linear operator: the Zakharov-Shabat
spectral problem. The Zakharov-Shabat problem (ZSP) for
potential Uðz; tÞ and a spectral parameter ζ ¼ ξþ iη is
written as

∂f
∂t ¼ −iζf þUðz; tÞg; ∂g

∂t ¼ −U�ðz; tÞf þ iζg: ð2Þ

The spectral parameter ζ defines here a continuous or
discrete spectrum associated with the field Uðz; tÞ. All
details can be found in Refs. [2–6], so we only review the

key points briefly. Without loss of generality, we will use
optical terminology typical for signal propagation in optical
fibers. The complete NFT spectrum of the considered ZSP
includes (i) a continuous spectrum that is defined on the
real axis of the complex plane ζ ¼ ξ by the complex
function rðξÞ, and (ii) a discrete spectrum that is given by
4 × N real parameters (the set of complex-valued eigen-
values fζng having a positive imaginary part together with
complex-valued norming constants frng). The discrete
eigenvalues correspond to a soliton part of the field
distribution, with N being the total number of solitons in
the propagating signal Uðz; tÞ. The discrete nonlinear
spectrum defines the soliton content of an arbitrary propa-
gating waveform Uðz; tÞ. For the field Uðz; tÞ that consists
of a set of separated solitons, each eigenvalue ζn specifies
the soliton parameters: amplitude 2ImðζnÞ, frequency
−2ReðζnÞ, position Tn ¼ log½jrnj=ð2ImζnÞ�=ð2ImζnÞ, and
phase φn ¼ − argðirnÞ.
For the NLSE, the field energy can be presented as a sum

of continuous (dispersive waves) and discrete (solitons)
spectra:

Z
∞

−∞
jUðz; tÞj2dt ¼

XN
n¼1

4ηn −
1

π

Z
∞

−∞
log jaðξÞj2dξ; ð3Þ

where the left side of equality corresponds to the energy
calculated in the temporal domain EtðzÞ, while the right
side consists of a contribution of the discrete spectrum
energy EdðzÞ and the continuous spectrum EcðzÞ, so
Et ¼ Ec þ Ed. Application of NFT for the integrable
NLSE has been well studied and documented [2–6].
Here, we explore the potential of its application in the
dissipative, nonintegrable systems for characterization of
coherent structures. There are, of course, many other well-
studied transforms in mathematics. The key question is
why one would apply this particular transform and what
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one would get from this? We would like to stress again that
IST/NFT cannot be applied in the same way in the
considered dissipative system, as it is used in the integrable
NLSE. However, in this Letter, we demonstrate that by
applying IST/NFT to a dissipative system (then it is not
supposed to work), one can observe that just a few discrete
eigenvalues can present well the evolution of dissipative
coherent structures. The proposed approach does not allow
us to fully describe dissipative nonlinear system evolution,
but it characterizes dynamics with good accuracy in
situations when a discrete spectrum component (in the
sense of the ZS spectral problem) is dominant.
We consider a particular albeit important example: the

evolution of the field governed by the cubic Ginzburg-
Landau Eq. (CGLE) in the context of laser system model-
ing (see, e.g., Ref. [7]):

i
∂U
∂z þ 1

2

∂2U
∂t2 þ jUj2U − i

�
σU þ α

∂2U
∂t2 þ δjUj2U

�
¼ 0;

ð4Þ

where δ > 0 is typically related to the effective distributed
saturable absorber action and α > 0 describes the effect of
distributed optical filtering. The saturated gain g0 and linear
loss Γ define σ:

σðEÞ¼ g0
2ð1þE=EsatÞ

−
Γ
2
; EðzÞ¼

Z
jUðz; tÞj2dt: ð5Þ

The CGL equation has special solutions in the form of
chirped dissipative solitons:

Uðz; tÞ¼U1þiC
0 ðtÞexpfiϕzg; U0ðtÞ¼

A
coshðt=τÞ : ð6Þ

The CGL Eq. (4) is not integrable; however, we can still
formally compute the NFT (nonlinear) spectrum of the
optical field Uðz; tÞ at each point z and study an evolution
of the nonlinear spectrum with z (see also Ref. [8]). We
anticipate that NFTmight allow us to describe the evolution
of coherent structures with a smaller number of parameters
compared to conventional Fourier harmonics analysis. The
Zakharov-Shabat problem (2) has been solved numerically
using the Bofetta-Osborne method [9]. A combined method
was used to localize discrete eigenvalues, including the
preliminary finding of the zeros of the function aðζÞ using
contour integrals, and their subsequent refinement using the
Newton method [10].
To explain the approach, let us first apply NFT analysis

to the general chirped pulse given by Eq. (6) (with
independent A and C). Figure 1 shows a number of discrete
eigenvalues N as a function of two chirped soliton
parameters: the chirp C and a product of the amplitude
A and the width τ. The Aτ parameter is proportional to the
L1 norm and also corresponds to the square root of the ratio

LD=LNL of the effective dispersion length (LD ¼ τ2) to the
characteristic nonlinear length (LNL ¼ 1=A2). The numbers
on the plot denote areas with different numbers of discrete
eigenvalues. A direct numerical solution of the Zakharov-
Shabat spectral problem is compared with the analytical
solution (which can be easily derived from the results of
Refs. [11–15]): A2τ2 ¼ C2=4þ ðN − 1=2Þ2 demonstrating
perfect agreement. The set of eigenvalues fζng is defined as
ζn¼ iηn¼ ið

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2τ2−C2=4

p
þ1=2−nÞ, where n are positive

integers satisfying condition
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2τ2−C2=4

p
þ1=2−n>0,

providing for ImðζnÞ > 0. The colors in Fig. 1 display a
fraction of the energy Ed, corresponding to the discrete
spectrum, to the total energy Et. We derive the analytical
expression for the fraction of energy containing in the
discrete spectrum,

Ed

Et
¼ A2τ2 − C2=4 − ðρ − 1=2Þ2

A2τ2
; ð7Þ

where ρ ¼ frac½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2τ2 − C2=4

p
þ 1=2� is a fractional part

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2τ2 − C2=4

p
þ 1=2.

Next we examine the NFT spectra of the chirped solitons
(6) that are specific solutions of the CGL equation. In this
case, parameters A, C, and τ are not independent, but
defined by δ, α, g0, Γ, and Esat. For δ > 0 and α > 0 chirp
parameter C is found as

FIG. 1. Dependence of the ratio of the energy Ed, correspond-
ing to the discrete spectrum, to the total energy Et on the Aτ and
the chirp parameter C of the general potential given by Eq. (6).
The numbers on the plot denote the number of discrete eigen-
values in the corresponding areas. Blue dashed lines defined by
the analytical expression A2τ2 ¼ C2=4þ ðN − 1=2Þ2 separate
areas with different numbers of discrete eigenvalues. Areas
limited by solid lines (I and II) define the subset of the CGLE
solitons with parameters defined by coefficients in Eq. (4). The
dash-dotted line denotes an existence domain of the chirped
CGLE solitons for g0 ¼ 0.3, Γ ¼ 0.1; Esat ¼ 1.
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C ¼ −
3

2

ðδαþ 1=2Þ
ð−δ=2þ αÞ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
ðδαþ 1=2Þ2
ð−δ=2þ αÞ2 þ 8

s
: ð8Þ

Here the sign in the above equation is determined from the
condition C=ð−δ=2þ αÞ > 0. It is convenient to denote
RðC;αÞ¼αðC2−1ÞþC and BðC; αÞ ¼ 3αCþ 1 − C2=2,
then soliton amplitude A, pulse width parameter τ

and phase ϕ are given by A2 ¼ σBðC; αÞ=RðC; αÞ, τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðC; αÞ=σp

and ϕ ¼ σ½2αC − ðC2 − 1Þ=2�=RðC; αÞ,
respectively.
The value of steady-state energy Es is expressed

either as Es ¼ 2A2τ ¼ 2BðC; αÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ=RðC; αÞp

or as Es ¼
Esat½g0=ð2σ þ ΓÞ − 1�, see Eq. (5). This yields the equation
on the energy Es of stationary solutions:

RðC; αÞ
2B2ðC; αÞE

2
s ¼

g0
ð1þ Es=EsatÞ

− Γ: ð9Þ

After energy Es is found, it fully determines parameter σ,
the sign of which will be important in the following
consideration.
The existence domain of the CGLE chirped solitons is

determined only by the choice of the gain g0, Γ, and Esat
parameters and it can be asymptotically expanded to the
quadrant δ ≥ 0, α ≥ 0 with Esat × ðg0 − ΓÞ=Γ → 0.
Figure 2 illustrates this statement. Numerical modeling
was carried out for the parameters g0 ¼ 0.3, Γ ¼ 0.1,
Esat ¼ 1 (which gives the energy value Es ¼ Esat × ðg0 −
ΓÞ=Γ ¼ 2 at δ ¼ α ¼ 0), as well as for the parameters
g0 ¼ 0.6, Γ ¼ 0.4, Esat ¼ 1 [Esat × ðg0 − ΓÞ=Γ ¼ 1=2].
First, we compute the dependence of the characteristics
of the nonlinear spectrum of the CGLE stationary solutions
(4) on the parameters α and δ, with all others fixed as
described above. Figure 2 presents the ratio of the energy of
the discrete part of the nonlinear spectrum Ed, to the total
energy Et as a function of the parameters α and δ. To

construct this figure, 200 values of each of the parameters α
and δ were used. For each pair of parameters, continuous
and discrete ZSP spectra have been numerically found
for the corresponding stationary solution of the CGLE
Eqs (6)–(7). The number of discrete eigenvalues for each
set of parameters is plotted in the corresponding areas in
Fig. 2(a). One can see that the proportion of the energy
contained in the discrete spectrum to the total energy is
always quite high—more than 82%. However, the areas
with 1 and 3 discrete eigenvalues have subdomains, where
the energy ratio exceeds 97.5%. This indicates that dynam-
ics is dominated by the coherent structures and NFT might
be the appropriate way to reduce an effective number of the
degrees of freedom required for description of this system.
The high concentration of energy in the discrete spectrum
might be explained by the fact that the chirp value in the
considered soliton solutions of the CGLE is limited:
jCj < ffiffiffi

2
p

. Note that the purely discrete nonlinear spectrum
is possible only when C ¼ 0 (when 2α ¼ δ). In this case,
Aτ ¼ 1. Figure 1 shows the complete existence domain of
the chirped CGLE solitons. Only when C ¼ 0, the total
energy is defined by the discrete one Ed=Et ¼ 1 that
corresponds to the purely discrete nonlinear spectrum.
This indicates that NFT analysis might be useful for
description of soliton dynamics in the CGLE. Our NFT
based analysis, in particular, fully determine the dynamics
of chirped pulses having the form Eq. (6) when they are
launched into an optical fiber span with negligible loss
effects (e.g., short nonlinear distance) LNL.
The boundaries separating areas with different discrete

eigenvalue count (from 1 to 4) obtained numerically are in
full agreement with the analytical formulas given the
numbers of discrete eigenvalues N.
We now examine application of the NFT for analysis of

CGLE Eq. (4) dynamics. A numerical modeling was
performed using the standard split-step Fourier method.
We consider as the initial condition the NLSE soliton
Uðz ¼ 0; tÞ ¼ 0.2= cosh ð0.2tÞ, with the peak power, that is
less than the power of the stationary solutions of the CGLE
Eq. (6) with the given parameters α and δ.
Thus, the initial field always has only a single discrete

eigenvalue, and the peak power of this field increases with
propagation along z. We consider two situations: one with
unstable dynamics with σ > 0, and one with stable propa-
gation with σ < 0. For each of these examples, the non-
linear spectrum was calculated at 400 points along z.
Figure 3 corresponds to the unstable case (σ > 0).
Oscillations of the field intensity distribution are accom-
panied by the spatial variations of the discrete spectrum. It
can be seen that, from the initial one discrete eigenvalue,
the discrete spectrum is growing into several eigenvalues
that contain most of the field energy. Two eigenvalues
evolve stably with z. Two others appear and decay
periodically with propagation. The periodically arising
fourth discrete eigenvalue merges with the closest discrete

FIG. 2. The ratio of the discrete spectrum energy Ed to the total
energy Et of the steady state chirped soliton solution of the CGLE
Eqs. (4)–(7) is shown as a function of the parameters α and δ.
Here g0 ¼ 0.3, Γ ¼ 0.1 (a) and g0 ¼ 0.6, Γ ¼ 0.4 (b). The dashed
lines separate the areas with different eigenvalue counts for the
corresponding CGLE stationary solutions Eqs. (6) and (7). The
dotted line shows the level of σ ¼ 0.
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point in the NFT spectrum, leading to quasisymmetric
configuration of these two eigenvalues relative to the real
axis and out-of phase oscillations. Note that the continuous
spectrum has fingerprints of the pulse features [see
Fig. 3(c)]. The important observation depicted in
Fig. 3(c) is that the major part of the energy is in the
discrete spectrum, making NFT an attractive approach to
reduce the number of degrees of freedom, even analyzing
such unstable dynamics. Figure 4 shows the dynamics
along z of the field intensity and the dynamics of discrete
eigenvalues ζn ¼ ξn þ ηn in the case of α ¼ 3.5, δ ¼ 0.35,
σ < 0. The initial single discrete eigenvalue evolves into
three clearly seen discrete eigenvalues that correspond to
the discrete NFT spectrum of the chirped CGLE soliton (6)
for the considered values of the parameters. Oscillations
that appear at first quickly fade out, and the fourth discrete
eigenvalue that appeared at the beginning disappears.
Again the lion’s fraction of the energy is in these three
discrete eigenvalues.
Using the Ginzburg-Landau equation as a model exam-

ple, we applied the nonlinear Fourier transform method to
characterize localized coherent structures in dissipative

nonlinear systems. It is shown that the NFT approach
might act as a tool that makes it possible to reduce the
number of the effective degrees of freedom when the
dynamic is dominated by the coherent structures, even if
they are embedded in the dispersive waves and demonstrate
unstable behavior. We have presented NFT analysis
of chirped solitons, both with arbitrary combination of
three parameters (amplitude, chirp, and width), and specific
solutions of the GL equation—the so-called autosolitons—
with parameters fixed by the coefficients of the GLE.
Considering the evolution of the fundamental soliton of the
NLSE in the GLE, we have demonstrated that dynamics
can be described with high accuracy by a limited number of
discrete eigenvalues of the corresponding ZS problem. Our
results are in line with the recent experimental works using
NFT for characterization of laser radiation [16–18]. One of
the most straightforward applications of the NFT analysis
is that the nonlinear spectrum defines evolution of any
complex input pulse (for example, laser radiation) launched
into optical fibers modeled by the NLSE.

This work was supported by the Russian Science
Foundation (Grant No. 17-72-30006).

FIG. 3. (a) Evolution of the intensity of the initial pulse having
form of the NLSE soliton. Here, α ¼ 3.5, δ ¼ 0.15, σ > 0.
(b) Dynamics of the discrete eigenvalues fζng of the nonlinear
spectrum for the considered case and (c) the module of the
continuous nonlinear spectrum rðξÞ. (d) Evolution of the total
energy Et, the discrete spectrum energy Ed, and the ratio Ed=Et.

FIG. 4. (a) Evolution of the intensity of the initial pulse having
form of the NLSE soliton. Here, α ¼ 3.5, δ ¼ 0.35, σ < 0.
(b) Dynamics of the discrete eigenvalues fζng of nonlinear
spectrum for the considered case and (c) the logarithm of the
continuous nonlinear spectrum rðξÞ module. (d) Evolution of the
total energy Et, the discrete spectrum energy Ed, and the
ratio Ed=Et.
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