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Abstract: The discovery of stable and broad frequency combs in monochromatically pumped high-Q
optical Kerr microresonators caused by the generation of temporal solitons can be regarded as one of
the major breakthroughs in nonlinear optics during the last two decades. The transfer of the soliton–
comb concept to χ(2) microresonators promises lowering of the pump power, new operation regimes,
and entering of new spectral ranges; scientifically, it is a big challenge. Here we represent an overview
of stable and accessible soliton–comb regimes in monochromatically pumped χ(2) microresonators
discovered during the last several years. The main stress is made on lithium niobate-based resonators.
This overview pretends to be rather simple, complete, and comprehensive: it incorporates the main
factors affecting the soliton–comb generation, such as the choice of the pumping scheme (pumping to
the first or second harmonic), the choice of the phase matching scheme (natural or artificial), the effects
of the temporal walk off and dispersion coefficients, and also the influence of frequency detunings
and Q-factors. Most of the discovered nonlinear regimes are self-starting—they can be accessed from
noise upon a not very abrupt increase in the pump power. The soliton–comb generation scenarios are
not universal—they can be realized only under proper combinations of the above-mentioned factors.
We indicate what kind of restrictions on the experimental conditions have to be imposed to obtain
the soliton–comb generation.
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1. Introduction

The generation of broad frequency combs, i.e., of long sequences of equidistant coher-
ent light lines, in monochromatically pumped high-Q Kerr microresonators [1–5] can be
regarded as one of the main discoveries in nonlinear optics during the last two decades.
Remarkably, the spectral positions of these lines do not generally coincide with (or are not
close to) the discrete resonator modes because of the dispersion of the latter. This is why the
interpretation of the combs as a sequential parametric excitation of new resonator modes is
rather fruitless. The right physical picture of the frequency comb in question is proven to
be the generation of a spatially narrow soliton propagating along the resonator rim with a
constant velocity v0 [5]. Fourier expansion of the light field employing its periodicity over
the circumference ensures the equidistance of the light lines with the frequency spacing
v0/R, where R is the major resonator radius. Thus, the comb and soliton are two physical
terms expressing different properties of the same nonlinear light state. Most probably, the
soliton nature of broad frequency combs has no alternative.

The soliton–comb concept is nowadays generally accepted for χ(3) resonators. It is
applicable not only to glass-based Kerr microresonators, but also to resonators made of
χ(3) crystals [5–10]. One can speak of the corresponding comb technology. The amount of
publications on the χ(3) combs can be estimated as ∼102. Note that the dissipative solitons
in question are essentially different from (and more complicated than) the so-called conser-
vative solitons associated typically with the nonlinear Schrödinger equation [11,12]. The
dissipative solitons balance not only the dispersion broadening and nonlinear compression
but also the gain owing to external pumping and the resonator losses.
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The transfer of the soliton–comb concept to the χ(2) microresonators, which possess the
lower second-order nonlinearity, promises further lowering of the pump power, entering
of new spectral ranges, and new attractive operation regimes; see also below. This transfer
cannot be straightforward because of the specific and important features inherent in the χ(2)

nonlinearity [13]. In contrast to the χ(3) case, elementary nonlinear processes involve not
four but three light quanta. These processes are the thresholdless generation of the second
harmonic (or sum frequencies) and the inverse threshold process of parametric oscillation.
The χ(2) comb generation can be viewed as a cascade of these processes. Running them
requires the employment of the phase matching (PM) for the first harmonic (FH) and
second harmonic (SH) resonator modes. The PM conditions in the χ(2) microresonators
can in turn be either natural, relevant to certain light wavelengths, or artificial using the
so-called radial poling [14–18]; see also below.

As soon as mutually coupled FH and SH modes are distinguished, we must deal
with the duality of the χ(2) solitons and combs—each of them must consist of FH and SH
components; see also Figure 1. The presence of subcombs in the FH and SH frequency
domains can definitely be regarded as a positive feature. Additionally, two different
pumping schemes (pumping into FH or SH resonator modes) have to be envisaged. These
FH and SH pumping cases are substantially different. The presence of the temporal walk off
between the FH and SH modes, which can be viewed as the difference in the corresponding
group velocities, is also an important feature of the χ(2) case. The effect of the walk off on
the soliton–comb generation is generally negative—it has to be minimized when possible.
Furthermore, the presence of two dispersion coefficients, relevant to the FH and SH spectral
ranges, has to be taken into account. Generally, the χ(2) case provides much more room for
the search for soliton–comb regimes as compared to the χ(3) case. Conservative solitons in
χ(2) media, which can be regarded as the basis for dissipative cavity solitons, are reviewed
in [19].

λp λ  /2p 

2λp

λp

λp

FH pumping

SH pumping λpR

z = Rφ

v0

Figure 1. Schematic of χ(2) comb generation; R and ϕ are the major resonator radius and the azimuth
angle. The output comb spectra are due to a dual FH-SH soliton propagating along the resonator rim
with velocity v0. The red spots indicate localization of the resonator modes near the rim.

Axially symmetric χ(2) microresonators are widespread [17,18,20–23]. Their linear
properties are largely common with those of the χ(3) resonators [17,24–26]. Each resonator
can be characterized by a major radius R, see Figure 1. The modes (whispering gallery
modes) are localized near the resonator rim, and the rim shapes can be different. Each
mode can be labeled by an integer azimuth number m and, additionally, by two transverse
modal numbers. All modal functions are proportional to exp(imϕ), where ϕ is the azimuth
angle. While exact analytical solutions exist only for spherical resonators, approximate
methods to calculate the modal frequencies, functions, and nonlinear interactions are well
developed [24,27–31]. This is also relevant to the methods for coupling light into and out
of the resonator. Owing to the presence of a coupler (tapered fiber, prism, etc.), the inverse
total (loaded) quality factor Q−1 consists of internal and coupling contributions.

The most common lithium niobate (LN) based χ(2) resonators are discs with the major
radius R ∼ 1 mm, the minor radius r . R, and quality factors Q = (107–108) [17,18]. The
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resonator modes can be viewed as quasiplane waves with frequencies ω ≡ 2πc/λ = kmc/n,
discrete wavenumbers km = m/R, and an effective refractive index n depending on the
modal numbers, R, and r. For R > 1 mm, n is close to the bulk index nb(λ); the differ-
ence n− nb characterizes the effects of the geometric dispersion. In the optical range, the
azimuth number m = 2πnR/λ is ∼104. The frequency distance δω = c/nR between
neighboring modes with δm = 1 is much larger than the line width. As LN is a uniaxial
optical material, modes with ordinary (o) and extraordinary (e) polarizations have to be
distinguished. In addition to lithium niobate, other polar crystals such as lithium tanta-
late, beta-lithiun borate, and aluminium nitride can be used to manufacture high-quality,
Q ≈ (106–108), microresonators for the visible and UV spectral ranges [18,32,33].

Investigations of the SH generation and parametric oscillation in χ(2) microresonators
are also known [17,18]. In LN resonators, the PM condition for the SH generation,
ω2m = 2ωm, can be fulfilled naturally at the FH wavelength λ1 ' 1064 nm with the
use of o- and e-polarized FH and SH modes [14]. The parametric oscillation for this natural
(birefringent) PM corresponds to the SH wavelength λ2 = λ1/2 ' 532 nm. Here and later,
the subscripts 1 and 2 refer to the FH and SH ranges, respectively. The employment of
the radial poling in LN resonators [15–18] enables one to fulfill the quasi-PM conditions at
practically any wavelength on demand via a controllable breaking of the axial symmetry. It
is also necessary to mention that, because of very small resonator line widths, fine tuning
means (such as the temperature or geometric tuning) have to be used to control the linear
and nonlinear phenomena [17,18,25,34].

Both the χ(3) and χ(2) combs originate from parametric instabilities inside the res-
onators. This is why the continuous-wave monochromatic pump is able to generate
temporal solitons. The threshold pump power for the instability Pth is largely controlled
by the relevant modal Q factors. Roughly speaking, in the χ(3) and χ(2) cases, Pth is
proportional to Q−2 and Q−3, respectively. For Q & 107, the χ(2) nonlinearity is typically
dominating, and Pth belongs to the µW range [17,18].

Initial experimental and theoretical attempts to obtain χ(2) combs dealt with bulk
systems [35–41] that are quite specific in physics and relevant to much higher threshold
pump powers. While some tens of comb lines were observed, neither solitons nor broad
comb spectra were reported. Recently, the first experimental efforts to generate the χ(2)

combs in microresonators have been made [42–45]. No soliton–comb regimes have been
observed so far to the best of our knowledge. Furthermore, we can claim that this failure is
in agreement with our theoretical results on the necessary conditions for the realization of
such regimes. Therefore, we see the main tasks of this mini-review in (i) the determination
of the conditions for the χ(2) soliton–comb generation and (ii) in the predictions of the main
properties of the soliton–comb states. Additionally, we will indicate where and why the
necessary conditions were violated in the known experiments. Lastly, we will compare our
findings with the known early predictions for the χ(2) soliton–comb states [46–49]. As far
as possible, the cases considered will be applied to experimentally realizable and important
situations.

A considerable part of the literature on nonlinear phenomena in microresonators, see,
e.g., [4,17,20,44], extensively employs the quantum–mechanical terminology and notation
deeply within the classical domain, where the applicability of the classical Maxwell equa-
tions is beyond any doubt. Being well developed and attracting, the quantum–mechanical
formalism here is out of place and confusing. We claim that it can easily be replaced by the
classical Hamiltonian formalism [50,51]. Keeping all merits of the quantum formalism, it is
fully adequate to the situation.

2. Basic Equations, Parameters, and Definitions
2.1. Periodic and Antiperiodic States

First, let the pump frequency ωp be close to a modal frequency and the FH-SH phase
matching be natural, i.e., the azimuth symmetry takes place. Then, two variants have
to be considered, namely pumping into a FH and into a SH mode. In the FH pumping
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case, the PM condition ω(2m0
1) ' 2ω(m0

1) can be satisfied with a high accuracy only for
a single azimuth number m0

1. It is implied that the frequency detunings ωp −ω(m0
1) and

ω(2m0
1)− 2ω(m0

1) are much smaller in the values than the intermodal distance c/nR. The
light electric field E(ϕ, t) can be represented as

E = E1 ei(m0
1 ϕ−ωpt) + E2 e2i(m0

1 ϕ−ωpt) + c.c., (1)

where E1(ϕ, t) and E2(ϕ, t) are slowly varying (and generally vectorial) FH and SH ampli-
tudes (envelopes). Obviously, these amplitudes are 2π-periodic in ϕ, and the SH azimuth
number m0

2 = 2m0
1 is even.

In the SH pumping case, the situation is different, as illustrated by Figure 2. The above
PM condition can be fulfilled only if the azimuth number of the pumped mode m0

2 is even
(Figure 2a). If m0

2 is odd (Figure 2b), two FH modes (with even and odd azimuth numbers)
must be excited. Here, the simplest PM conditions are ωm0

2
= ωm0

1
+ ωm0

1+1, m0
2 = 2m0

1 + 1.

Let us use (regardless of the parity of m0
2) the ansatz

E = E1 ei(m0
2 ϕ−ωpt)/2 + E2 ei(m0

2 ϕ−ωpt) + c.c. (2)

for the light field. Then, the first exponential factor is 2π periodic for an even m0
2 and 2π

antiperiodic for an odd m0
2. As the true light field E(ϕ, t) is 2π periodic, we must accept that

the FH amplitude E1(ϕ, t) is antiperiodic for the odd m0
2; i.e., E1(ϕ, t) = −E1(ϕ± 2π, t).

The SH amplitude is still 2π periodic, E2(ϕ, t) = E2(ϕ± 2π, t). A dual FH-SH state with an
antiperiodic amplitude E1 and periodic amplitude E2 is named the antiperiodic state [52,53].
The antiperiodic sates (solutions) are topologically different from the conventional periodic
states. No temporal evolution can make the conversion between these two states. To the
best of our knowledge, the separation of the light states into periodic and antiperiodic
ones is original, and it was never implemented for bulk χ(2) systems. We stress that the
antiperiodic states are relevant to pumping into an odd SH mode. Otherwise, we have a
periodic dual state, such that E1(ϕ, t) = E1(ϕ± 2π, t) and E2(ϕ, t) = E2(ϕ± 2π, t).

Figure 2. The excitation of periodic (a) and antiperiodic (b) states for SH pumping into even and odd
resonator modes. The primary FH azimuth number m0

1 = m0
2/2 is an integer in (a) and semi-integer

in (b). Side harmonics arise automatically in (b) above the threshold.

Using the above vectorial notation, we wanted to stress the generality of the periodic
and antiperiodic light states for the χ(2) nonlinearity. While the FH and SH resonator modes
can be different in polarization, one can always deal with scalar FH and SH amplitudes
denoted in what follows as F and S.

2.2. Equations for the Modal Amplitudes

Now, we write down nonlinear equations for the complex modal amplitudes Fm1

and Sm2 relevant to the FH and SH frequency domains. It is assumed, as in all known
theoretical studies, that the modal polarization and the transverse modal numbers stay the
same within each of these domains. We start from the phase matching case relevant to an
even azimuth number m0

2 = 2m0
1 in the absence of radial poling (full azimuth symmetry).

This takes place for the FH pumping and is also applicable to the SH pumping into an even
mode, see Figure 2a. It is useful to count the FH and SH frequencies from ω1 and ω2. In
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accordance with Equations (1) and (2), ω1 = ωp, ω2 = 2ωp in the FH pumping case, while
ω1 = ωp/2, ω2 = ωp in the case of SH pumping. Furthermore, instead of m1 and m2, we
introduce the more convenient FH and SH modal numbers j = m1 −m0

1 = 0,±1, . . . and
l = m2 −m0

2 = 0,±1, . . .. With these preliminaries, we have

iḞj − Z1,jFj = 2µ ∑
l

Sl F∗l−j + ih1δj0

iṠl − Z2,lSl = µ ∑
j

FjFl−j + ih2δl0 . (3)

Here, the dots indicate the differentiation in time; Z1,j = ωj − ω1 − iγj and Z2,l =
ωl − ω2 − iγl , γj,l = ωj,l/2Qj,l are the modal decay rates; µ and h1,2 are the nonlinear
coupling coefficient and the internal pump amplitudes, respectively; and δj0,l0 are the
Kronecker deltas. For the FH and SH pumping, we have h2 = 0 and h1 = 0, respectively.
The modal amplitudes Fj and Sl are defined such that ωj|Fj|2 and ωl |Sl |2 are the modal
energies. This definition corresponds to the classical Hamiltonian formalism [50]. The
dimensionless quantities |Fj|2/h̄ � 1 and |Sl |2/h̄ � 1 are nothing but the number of
modal FH and SH light quanta in the classical limit. The presence of a factor of 2 in set (3)
reflects the Hamiltonian nature of the nonlinear interaction—the total energy is conserved
for h1,2 = 0 and γj,l = 0.

The coefficients µ and h1,2 can be determined in a quite general manner via modeling
the modes and their coupling in and out of the resonator [29,31]:

µ '
dω3/2

p

2n3R1/2σ1/2
eff

, h1,2 '
(
P0

Q̃1,2

)1/2
, (4)

where d is the relevant component of the conventional susceptibility tensor, σeff is the
effective interaction cross-section, P0 is the pump power, Q̃−1 is the coupling contribution
to Q−1, and n ' no ' ne is a representative refraction index. Further details can be found
in Section S1 of the Supplementary Materials.

The rate coefficients Z1,j and Z2,l can be expressed by the group velocities v1,2 and
dispersion coefficients v′1,2 if we use the expansion ω(k) = ω(k0) + vδk + v′δk2/2 with
δk = k− k0 near the points k0 = m0

1/R and m0
2/R:

Z1,j = ∆1 − iγ1 + v1 j/R + v′1 j2/2R2 (5)

Z2,l = ∆2 − iγ2 + v2 j/R + v′2l2/2R2.

The parameters v and v′ are expressed by the refractive index n(λ): v = c/(n −
λn′) and v′ = −cλ3n′′/2π(n− λn′)2, where the prime indicates the differentiation in λ.
Knowledge of the dependences no,e(λ), with or without the geometric dispersion, enables
one to calculate v1,2 and v′1,2 as functions of λ2 and λ1 = 2λ2. Further details can be found
in Section S2 of the Supplementary Materials. Expressions for detunings ∆1,2 depend on
the pumping scheme. For the FH pumping, ∆1 = ωm0

1
−ωp and ∆2 = ωm0

2
− 2ωp. In the

SH pumping case, ∆2 = ωm0
2
−ωp and ∆1 = (2ωm0

1
−ωp)/2.

Consider now the remaining case of SH pumping into a mode with an odd azimuth
number m0

2 when two FH modes with even and odd azimuth numbers enter the phase
matching condition, see also Figure 2b. The SH modes can be numerated again with the
integer l = m2 −m0

2 = 0,±1, . . .. The only way to symmetrically numerate the FH modes
is to introduce a semi-integer number j = ±1/2,±3/2, . . . such that m1 = m0

2/2 + j. The
form of sets (3) and (5) remains the same, and the only difference is in the expression for
detuning ∆1: ∆1 = (ωm0

1
+ ωm0

1+1 −ωp)/2.
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2.3. The Impact of Radial Poling

The radial poling enables one to adjust the phase matching to practically any desirable
spectral point with no effect on the linear properties. In polar χ(2) materials, such as LN,
the largest components of the quadratic susceptibility tensor, d13 and d33, change sign
under the inversion of the spontaneous polarization. The periodic radial poling results in
the ϕ periodic sign changing for any of these components, as illustrated schematically by
Figure 3a. Let d have the absolute value d0. The periodic sign-changing function d(ϕ) can
be represented then by the Fourier series

d = ∑
s

ds exp(isϕ) . (6)

If N is the number of poling periods, the nonzero components ds correspond to
s = 0,±N ,±2N , . . .. In the case of the ± symmetric radial domain structure (50% duty
cycle ratio), which is the most suitable for quasiphase matching, only the Fourier harmonics
with odd ratios s/N = ±1,±3, . . . are nonzero. For these harmonics |ds| = 2d0N/π|s|,
see also Figure 3b. The reduction factor |ds|/d0 decreases with an increasing |s|/N but
remains comparable with 1 for |s| = N . Typically N � 1, and the neighboring peaks are
well separated from each other.

-1

0

1

23 /2

d 
(

) /
 d

0

Azimuth angle, 
/20

a)

0 4 8 12 16 20
0.0

0.2

0.4

0.6
b)

| d
s / 

d 0 |

Fourier harmonic number, s

N  = 4 

Figure 3. (a) Illustration of the azimuth dependence of the susceptibility coefficient d(ϕ) for a perfect
symmetric radial domain pattern with N = 4. (b) First three harmonics of the corresponding Fourier
spectrum with s = N , 3N , and 5N .

The employment of the largest first Fourier harmonics of d(ϕ) for quasiphase matching
corresponds to the PM condition 2ωm0

1
= ω2m0

1±N
for SH generation. The sign “plus” is

relevant to the most typical case of decreasing wavelength dependence of the refraction
index n(λ) [32]. We see that the SH azimuth number m0

2 = 2m0
1 ±N is even for an even

alternation number N and odd for an odd number N . In the second case, SH pumping
leads to the excitation of periodic states. In the case of the odd combination m0

2 ∓ N ,
the above PM condition cannot be fulfilled. However, we can fulfill the PM condition
ωm0

1
+ ωm0

1+1 = ω2m0
1±N

, which leads to the excitation of the antiperiodic states. Thus, the
quasi-PM by means of the radial poling results in a controllable shift of the FH azimuth
number m0

1. The set (3) for the FH and SH amplitudes results in them staying unchanged.
Note that microresonators made of commercial PPLN wafers [20] are not appropriate

for the spectral adjustment in question. The spectrum |ds| includes in this case many signif-
icant peaks |dN±1|, |dN±2|, . . . in addition to |dN |, which leads to unwanted interference of
many cascading χ(2) processes.

The possibility to adjust the phase matching to any spectral range raises the question
about the specific goals and properties of the radial poling. Figure 4 shows the dependences
v1,2(λ) and v′1,2(λ) for the e-polarized modes in a LN-based resonator with R = 1.5 mm.
The effects of geometric dispersion are very weak here. The zero walk-off point corresponds
to λc

2 ' 1349 nm, where the dispersion coefficients v′1 and v′2 are opposite in signs. The
vicinity of this point, as will be shown below, is especially attractive for the soliton–comb
generation. The number of periods N necessary to achieve quasi-PM at this point can be
estimated as 284. Further details can be found in Section S3 of the Supplementary Materials.
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Figure 4. Dependences v1,2(λ) (a) and v′1,2(λ) (b) for a LN-based resonator with R = 1.5 mm and
R/r = 3. The dotted and solid lines refer to the bulk index nb and the effective index n incorporating
the effects of geometric dispersion. The vertical line λ2 = λc

2 ' 1.349µm (λ1 = λc
1 ' 2.698µm)

corresponds to zero walk-off point v1 = v2.

2.4. Fundamental z, t Representation

The primary set (3) of the ordinary differential equations is convenient for numerical
simulations. However, many fundamental features of the soliton–comb states become more
evident if we transform it to a set of partial differential equations. This can be performed in
terms of the FH and SH amplitudes F(ϕ, t) and S(ϕ, t) defined by the Fourier expansions

F = ∑
j

Fj exp(ijϕ), S = ∑
l

Sl exp(ilϕ) . (7)

For integer values of j, l, this leads automatically to the periodic states, while for integer l
and semi-integer j, we arrive at an antiperiodic state.

Using Equations (3), (5) and (7) and introducing the rim coordinate z = Rϕ, one can
make sure that the periodic and antiperiodic states obey the same set of nonlinear equations
for any phase-matching scheme [52,53]:

[ i(∂t + v1∂z) + (1/2) v′1∂2
z −Ω1]F = 2µSF∗ + ih1

[ i(∂t + v2∂z) + (1/2) v′2∂2
z −Ω2]S = µF2 + ih2 , (8)

where Ω1,2 = ∆1,2 − iγ1,2. At perfect resonant pumping and phase matching, we have
∆1,2 = 0. All parameters entering set (8) are known or controllable in experiment. For the
χ(2) solitons, set (8) plays a role that is similar to the role of the nonlinear Lugiato–Lefever
equation for the χ(3) soliton–comb states [4,5]. However, these two cases are fundamentally
different. For the periodic states, equations analogous to set (8) can be found in [46–48].

Consider some important properties and useful transformations of set (8):

– This nonlinear set admits dual steady-state solutions F(z− v0t), S(z− v0t) circulating
with a common velocity v0 without shape changes. Solitons belong to this class of
solutions. Velocity v0 has to be determined simultaneously with the shape of the
envelopes.

– Set (8) is written for a static coordinate frame. It is practical to rewrite it for a coordinate
frame moving with velocity v1. To conduct this, it is sufficient to drop the term v1∂z in
the first equation and replace v2 by −v12 = v2 − v1 in the second one. This is assumed
from now on.

– In a dual steady state propagating with a constant velocity v0, the modal amplitudes
Fj and Sl oscillate in time as exp(−ijv0t/R) and exp(−ilv0t/R). This elementary
property is useful to control the establishment of dual steady states in numerical
simulations; see Section 4.

– Attempts to rewrite set (8) for the antiperiodic states using the replacements F(z, t) =
F̃(z, t) exp(±iz/2R) lead to restoration of the periodicity but also to an explicit z-
dependence of the right-hand sides (nonautonomous system). This is inappropriate.
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The structure of Equation (8) gives a hint about the normalization of parameters
relevant to the linear properties of the system. Such a normalization enables one to decrease
the number of variable parameters. In what follows, we will use the following normalized
detunings, walk off, and dispersion parameters δ1,2, α, and β1,2:

δ1,2 =
∆1,2

γ1,2
, α =

v12

γ2R
, β1,2 =

v′1,2

2γ1,2R2 . (9)

As a rule, the actual values of the detunings are restricted by the inequalities |δ1,2| . 1.
The actual values of α and β1,2 substantially depend on the group velocity difference
v12 = v1 − v2, the dispersion coefficients v′1,2, and the decay rates γ1,2.

For LN resonators, typical values of the decay rates are ∼107, such that |β1,2| � 1. On
the contrary, we typically have |α| � 1. Exceptions to this rule are possible near the zero
walk-off point λ2 ' 1349 nm. The decay rates γ1 and γ2 are typically not strongly different,
such that the assumption γ1,2 = γ can be used sometimes to simplify the modeling.

Generally speaking, the values of F, S, and h1,2 also need some normalization. It
is, however, different in the FH and SH pumping cases. We will provide the relevant
information when necessary.

One more important property of set (8) is the presence of spatially uniform steady-
state background solutions F̄ 6= 0, S̄ 6= 0 [54]. In the steady state, F0 = F̄ and S0 = S̄.
Obviously, such a dual background is possible only for the periodic states. The dual
background is closely related both to the properties of the solitons and to the thresholds of
the instabilities leading to soliton–comb formation. Omitting all derivatives in (8), one can
easily come to a closed algebraic equation for |F̄|2 that is, however, different for the FH and
SH pumping cases. We have |S̄| = µ|F̄|2/|Ω2| and |Ω1|/2µ for the FH and SH pumping
cases, respectively. The dependence of |F̄|2 on the pump amplitudes h1,2 is presented
graphically in Figure 5. In both pumping cases, the dependence of |F̄|2(h1,2) is controlled
by the phase Φ = arg(Ω1Ω2), such that multivalued solutions exist for sufficiently small
|Φ|. These dependences can be interpreted in the terms of the bifurcation theory [55]. This
theory cannot, however, provide useful insights into the properties of light states well
above the instability thresholds because of a very large number of the FH and SH light
harmonics.
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Figure 5. The normalized dependences of |F̄|2 on the pump strength parameters h1,2 for the cases of
FH (a) and SH (b) pumping. The curves are relevant to different values of the phase Φ = arg(Ω1Ω2).
Zero detuning case, ∆1,2 = 0, corresponds to Φ = π. The horizontal red line in (b) is related to the
single background state F̄ = 0, S̄ = −ih2/Ω2.

Importantly, the dual background with F̄, S̄ 6= 0 always exists in the FH pumping
case, see Figure 5a. At the SH pumping, the situation is different. For sufficiently small
values of h2, there is a single background state, such that F̄ = 0 and |S̄| = h2/|Ω2| 6= 0,
see Figure 5b. This difference has dramatic consequences for the dual comb–soliton states,
see Sections 4–6. Note also that Figure 5 gives a clear hint about the normalization of the
amplitudes F, S and the pump amplitudes h1,2 in the FH and SH pumping cases.
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Lastly, we mention two limiting cases for set (8):

– In the limit h1,2 → 0, γ1,2 → 0 (no gain, no modal decay), we proceed to the conserva-
tive case reviewed in [19]. A number of exact soliton solutions are known here, but
they are far from the subject of our study.

– In the dissipativeless driven limit γ1,2 → 0 at ∆1,2 6= 0 and h1,2 6= 0, one can also
obtain exact soliton solutions [56]. It turns out, however, that they are all unstable, i.e.,
they cannot be realized.

3. Instability Thresholds

As is well known, the generation of second harmonic is thresholdless—it corresponds
just to forced oscillation caused by the χ(2) nonlinearity. This thresholdless process becomes
merely more efficient in the presence of FH-SH phase matching. On the contrary, the
excitation of FH harmonics in the presence of SH modes is always a coherent threshold
process. This explains a big difference in the properties of the parametric excitation for the
FH and SH pumping schemes in the microresonators [54].

The simplest and most efficient scheme is the SH pumping scheme. At sufficiently
small pump powers (small values of h2 at h1 = 0), we deal simply with the linear excitation
of the pumped mode m0

2. Its steady-state amplitude is S0 = S̄ = h2/(γ2 + i∆2), and
detuning ∆2 characterizes just the distance to the linear resonance. To see the effect of S0
on the FH harmonics, we consider the first of Equation (3) with Sl = S0δl,0 and h1 = 0. The
quantities Fj and F∗−j with an arbitrary j obviously obey two linear differential equations.
Can they have a nonzero steady-state solution? Using the zero determinant solvability
condition for linear algebraic equations and Equation (9) for the normalized parameters,
we obtain the threshold condition in the form [52–54]

ηth
2,j =

[
1 + (δ1 + β1 j2)2

]1/2
(1 + δ2

2)
1/2 , (10)

where η2 = 2µh2/γ1γ2 is the normalized pump amplitude. The same threshold equation
can be obtained using a more general approach; namely, one can set Fj, F∗−j ∝ exp(−iνt) to
determine the complex characteristic exponent ν = ν′ + iν′′ via a linear stability analysis.
Then, one can make sure that ν′′ > 0 for η2 > ηth

2,j, while ν′′ < 0 for η2 < ηth
2,j. Thus, small

amplitudes F±j(t) decay below the threshold and grow exponentially above it. This fully
justifies the use of the threshold Equation (10). Note that similar relations with different
notations are known in the literature.

Consider in some detail the threshold properties given by Equation (10). Remarkably,
it includes neither the walk-off parameter α nor the SH dispersion coefficient β2. The
threshold equation refers to the FH pairs j and −j. The value of j can be an integer or
semi-integer depending on the type of solution in question. The thresholds are generally
different for different |j|. However, the minimal in δ1 values of ηth

2 are the same for all |j|.
The value of δ1 minimizing the threshold for a pair ±j is δ

(j)
1 = −β1 j2; it is substantially

different for different j2. Using this property, one can excite selectively any j,−j pair on
demand. The absolute threshold minimum, [ηth

2 ]min = 1, can be achieved indeed at δ2 = 0,
i.e., at the exact resonant excitation of the pumped SH mode. It is clear now that the
parameter η2 can be expressed by the pump power as η2 = (P/P th

min)
1/2.

Now we turn to the FH pumping scheme. It is relevant not only to the comb generation
issue, but also to the SH excitation. This scheme is complex compared to the previous one
for fairly simple reasons. The parametric instability requires sufficiently large values of the
SH amplitude S0 = S̄. They can be achieved, in turn, only for sufficiently large values of
the amplitude of the pumped mode F0 = F̄(h1). Keeping this fact in mind, we consider
what happens if we admit the presence of small perturbations δF(ϕ, t) and δS(ϕ, t), such
that F = F̄ + δF and S = S̄ + δS. Substituting these expressions into Equation (8) with
h2 = 0, we see that the SH perturbation δS becomes linearly linked to the FH perturbation
via the term F̄δF, which was absent earlier. As a result, we must deal with a quartet of
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perturbations Fj, F∗−j, Sj, S∗−j ∝ exp(−iνt) instead of the former parametric pair Fj, F∗−j.
The characteristic equation for ν becomes a cumbersome four-degree algebraic equation
including all linear parameters δ1,2, β1,2, and α [54]. The threshold properties become
complicated, and they cannot be covered by simple relations similar to Equation (10).

Nevertheless, a general overview and illustrations of the threshold properties, which
do not pretend to be complete, are possible. We introduce first the normalized pump
amplitude η1 =

√
2µh1/γ1

√
γ1γ2; this normalization is different from that relevant to the

SH pumping. The presence of parameter α, ranging from 0 to very large values, in the
threshold equation raises questions about the effect of walk off. It turns out that the lowest
threshold value of η1 at a zero walk off (α = 0) corresponds to j = 0, i.e., to an internal
instability of the dual background [54]. For detunings δ1,2 = 0, this value is minimal,
ηth

1,0 = 3
√

2. With increasing |α|, some quartets with j 6= 0 quickly become the easiest to
excite. However, the optimal values of |j| depend significantly on the dispersion coefficients.
This is illustrated by Figure 6, which was obtained with the use of numerical methods.
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Figure 6. The threshold dependences ηth
1,j(|α|) for FH pumping at δ1,2 = 0. (a) λp ' 2698 nm,

β1 = 5.3, and β2 = −1.44 of 10−3. (b) λp ' 1664 nm, β1 = −4, β2 = −15 of 10−2. Two horizontal
lines 3

√
2 ' 4.24 and 2 indicate the internal instability threshold and the limiting value ηth

1,j(∞) = 2.

Figure 6a is plotted for δ1,2 = 0 and the representative dispersion parameters relevant
to the quasi-PM in LN. Within a broad range of |α|, the lowest threshold corresponds to
harmonics with very large values of |j|. Figure 6b corresponds to the natural PM, where
the dispersion coefficients β1,2 are negative and relatively large in their absolute values.
The effect of |α| is strongly different here, and it strongly depends on |j|. The reason is in
the competition between the walk off and dispersion terms entering the rate coefficient
Z2,l given by Equation (5). Anyhow, the selective excitation of modes with |j| = 1, 2 is
practically impossible. The effects of nonzero detunings of δ1,2 can also be investigated
numerically. They also do not facilitate the selective excitation of harmonics with small
values of |j|.

With increasing |α|, the threshold values ηth
1,j(α) slowly approach two from above.

This range is, however, not favorable for the soliton–comb generation because of a strong
suppression of the side SH harmonics with l 6= 0, see also Sections 5 and 6.

4. Numerical Methods

We simulated predominantly set (3) in the coordinate frame moving with velocity
v1 by using the conventional fourth-order Runge–Kutta method [57]. Initially, for verifi-
cation purposes, we also solved set (8) of the partial differential equations by using the
step-split Fourier method [58]. The results were practically equivalent. The number of
Fourier harmonics taken into account (and the mesh points in ϕ) ranged from 32 to 1024
within each of the FH and SH frequency domains. The accuracy of the calculations was
controlled by changing the time step and number of harmonics. Different values of the
variable input dimensionless parameters of the system (η1,2, δ1,2, β1,2, α) were used. With
harmonics Fj(t), Sl(t) calculated, one can investigate the temporal evolution of the spatial
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profiles F(ϕ), S(ϕ) and comb spectra |Fj|2, |Sl |2. Additionally, it is possible to verify the
establishment of steady states moving with a constant velocity and, if applicable, determine
this velocity v0.

Three main problems were considered numerically:

– We numerically verified the analytical results relevant to the instability thresholds.
To do so, we used initial conditions with very small random complex values of Fj(0)
and Sl(0) to see the initial exponential growth or decay of |Fj|(t) for different values
of η1,2. Coincidence of the analytical and numerical results with a high accuracy was
always achieved.

– We verified the stability of the dual soliton solutions obtained analytically in [52,56]
for the known limiting cases. As the initial conditions, we used Fourier transforms of
the relevant analytical expressions for F(ϕ) and S(ϕ). Numerical analyses has shown
that all the analytical solutions are unstable: Temporal evolution inevitably leads to
irregular spatial profiles and comb spectra.

– We tried to generate stable steady-state soliton–comb solutions starting from very
small random complex amplitudes Fj(0) and Sl(0). As a rule, the evolution of our
nonlinear systems well above the threshold ultimately leads to highly irregular sat-
urated behavior after a stage of exponential growth. When abruptly switching the
pump on, the rough features of this irregular behavior depend also on the choice of
the initial conditions. Nevertheless, for many well-defined input parameters, proper
pumping schemes, and not very abrupt switching the pump on, temporal evolution
leads reliably and uniquely to multiparametric families of comb–soliton states. Below
we describe the corresponding adiabatic procedure of growing soliton–comb states as
applied (for definiteness) to the SH pumping case.

Let FH harmonics ±j possess the lowest threshold. For η2 < ηth
2,j, we have then the

steady state with S0 6= 0 and zero other harmonics. Switching to η2 slightly above ηth
2,j, we

obtain a steady state including S0 and only a few relatively small other essential FH and
SH harmonics. After that, the steady-state harmonics are used as new initial conditions at a
slightly larger value of η2. This procedure is repeated then many times to come to a steady
state well above the threshold. The number of FH and SH harmonics taken into account
has to be chosen properly. The final state is insensitive to the choice of the initial random
amplitudes. The states achieved in this way can be qualified as self-starting steady states,
and their stability is doubtless. Let us stress that the achievement of the soliton–comb states
with the adiabatic procedure is not guaranteed. However, in many cases, it takes place.

The restriction on the rise time of the pump, τp, that is necessary to achieve the steady
state is not very obligating. It is sufficient to fulfill the inequality γ1,2τp � 1, which
corresponds typically to τp & 1 µs. Note also that soliton–comb states can be achieved often
in a few steps of step-wise increase in the pump power.

The establishment of soliton–comb steady states and the corresponding velocity v0
can be quantified with a high accuracy by using a correlation method. We use the fact
that the Fourier harmonic Aj(t) (Fj or Sj) known in the coordinate frame moving with
velocity v1 can be recalculated in the frame moving with an arbitrary velocity v∗ through
multiplication by exp[ij(v1 − v∗)t/R]. Let us introduce the dimensionless error parameter

ε(t, τ) =
∑j |Aj(t)− Aj(t− τ)|2

∑j(|Aj(t)|2 + |Aj(t− τ)|2) , (11)

where Aj refers to a coordinate frame moving with velocity v∗, t is the calculation time,
and τ is a variable time shift. Obviously, ε(t, τ) turns to zero only when we deal with the
steady state and, simultaneously, v∗ = v. The error parameter calculated for modestly
large evolution times, γ1,2t & 103, and minimized over v∗ shows extremely small values
(ε = 10−14–10−15) caused by the numerical noise, see also below. For smaller t, i.e., during
the transient stage, it is larger by many orders of magnitude. We thus have a numerical
tool to control the establishment of steady states and to precisely determine the velocity v0.
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Figure 7 shows three examples of the temporal evolution of ε(t, τ) relevant to our
adiabatic procedure applied to the antiperiodic case at γ1,2 = γ = 107 s−1 and τ = 1/γ;
the parameters β1 = 0.02, β2 = −0.01, α = 1 are representative for a close vicinity of the
zero walk-off point in the LN-based resonators. The harmonics in question are Fj. The
normalized pump amplitude η2 sequentially takes 17 values above the threshold: 1.01,
1.1, . . . , and 30. Figure 7 exhibits the evolution of ε after taking the first two and the last
values at t0, t1, and t17. The most general feature of this evolution is always the same: it is
an almost exponential decrease in ε from initial values of the order of 1 to extremely low
values of 10−14–10−15. Note also some quantitative details: The longest evolution, shown
in Figure 7a, starts from modal noise. It takes about (5–7)γ−1 for the harmonics to grow
exponentially and reach the saturation. The corresponding evolution time can be identified
with the rise time of the near-threshold optical parametric oscillation. The further evolution
runs, which start from regular distributions of the FH and SH harmonics achieved during
the previous runs, occur substantially faster. Our choice of taking 17 steps of evolution to
reach the state with η = 30 is largely arbitrary. In many cases, the same final state can be
achieved in a few steps.
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Figure 7. Three representative evolution runs for the error parameter ε(t, τ) relevant to the FH
harmonics Fj and γτ = 1. The states under study are antiperiodic. The input dimensionless
parameters are δ1,2 = 0, β1 = 0.02, β2 = −0.01, γ = 107 s−1, and α = 1. The time step is 0.02γ−1. The
evolution run relevant to (a) starts at t0 from noise and ends up at t1. The evolution runs (b,c) start
from the previous steady-state values of the FH amplitudes.

In the next sections, we will see in detail the spatial and spectral properties of the dual
states grown with the use of our adiabatic procedure.

5. Soliton–Comb States for SH Pumping

Below we report the results on soliton–comb generation obtained by using our adi-
abatic procedure in the SH pumping case for LN resonators [53,59]. The ϕ-dependences
of |F|2, |S|2, arg[F], and arg[S] and the spectra |Fj|2 and |Sl |2 are of our prime interest.
Additionally, we are interested in the dependences of the soliton–comb characteristics on
the pump amplitude η2, the walk-off parameter α, and other variable parameters of the
system. Generally, the soliton position in the resonator depends on the choice of the initial
random amplitudes. Since the azimuth angle ϕ can be counted from any point, we can
chose its zero point as convenient.

We start our report with the case of quasi-PM via the radial poling. Here, the pump
wavelength λp can take practically any value. In particular, it can be made arbitrary close
to the zero walk-off point λc

2 ' 1349 nm. This case is especially important. For sufficiently
small values of δλ = λp − λc

2, the group velocity difference is given by v12 [105 cm/s] '
−5.9× δλ [nm] in accordance with Figure 4a. Correspondingly, for |δλ| . 10 nm and
typical values of R and γ2, the walk-off parameter α = v12/γ2R ranges from 0 to large
negative and positive values, while the dispersion coefficients β1,2(δλ) stay practically
constant and opposite in signs, β1 > 0, β2 < 0.
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5.1. Antiperiodic Solutions Near λc
2 ' 1349 nm

Figure 8 corresponds to an antiperiodic steady state moving with velocity v01 =
v0 − v1 = 0. It is relevant to the zero walk off (δλ = 0, α = 0); η2 = 30; zero detunings
(δ1,2 = 0); R = 1.5 mm; and decay rates γ1 = 107, γ2 = 108 s−1 (Q1 ' 3.3 × 107,
Q2 ' 0.7× 107). The total number of harmonics taken into account is 1024. Figure 8a
and Figure 8d show the central parts of the normalized FH and SH intensity profiles—the
intensities stay constant far from the center. It is evident that we are dealing with a narrow
dual dark–bright soliton. Far from the soliton core, the normalized values of |F(ϕ)|2 and
|S(ϕ)|2 ('29 and 1) nicely correspond to the dual background considered in Section 2. At
the first sight, this feature is not consistent with the absence of the dual background for
the antiperiodic states. The point is that the amplitude F(ϕ) tends to the opposite left and
right constant values far from the center, and these values can be found from Equation (8).
The facts that (i) the intensity profiles are even in ϕ and (ii) the FH intensity |F(ϕ)|2 turns
exactly to zero at the soliton center are exclusively due to our zero walk-off assumption.
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Figure 8. The properties of the antiperiodic steady state grown adiabatically for η2 = 30, R = 1.5 mm,
α = 0, δ1,2 = 0, β1 ' 0.02, and β2 ' −0.01; 1024 FH and SH harmonics are taken into account. The
upper and lower rows refer to the FH and SH characteristics, respectively. They show the normalized
intensity profiles (a,d), the phase profiles (b,e), and the comb spectra (c,f). The horizontal dashed
lines indicate the cut-off level of 10−4. The number of FH and SH comb lines above 10−4 is 122
and 162.

Figure 8b and Figure 8e exhibit ϕ-dependences of the phases arg[F] and arg[S]. While
an overall π change in arg[F] across the resonator is general for the antiperiodic states, the
π jump at ϕ = 0 is typical only for α = 0. More specifically, the line Re[F](ϕ), Im[F](ϕ) on
the complex plane crosses the zero point at a finite angle because of the symmetry leading
to an abrupt π jump of the phase. For α 6= 0, the function arg[F](ϕ) is smooth. Regarding
the SH phase arg[S], only smooth (but large) deviations from zero are present near the
soliton center, see Figure 8e.

The FH and SH comb spectra are shown in Figure 8c and Figure 8f. They are symmetric
in j and l and very broad. The normalizations of F and S are slightly different and specific
for the SH pumping case. On the other hand, they provide the maximum values of |Fj|
and |Sl | of the order of one. The shapes of the FH and SH spectra are notably different.
The central peak in Figure 8f is due to the pump. To quantify the comb spectra, we define
the number of significant FH and SH lines (N1 and N2) whose normalized intensities are
above the cut-off level 10−4. This characteristic is conditional and rather useful; the lines of
this strength are typically well above the light noise. In our case, N1 = 122 and N2 = 161
correspond to the well developed dual combs.
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With increasing η2, the dual soliton is progressively narrowing and the comb spectra
are getting broader. No deterioration of the soliton–comb states was seen up to the maximal
investigated values ηmax

2 ≈ 102. Despite an apparent simplicity of the soliton profiles at
α = 0, no analytical solutions for them is known so far.

It is not difficult to estimate the numbers of light quanta |Fj|2/h̄ and |Sl |2/h̄ in the FH
and SH modes for the data of Figure 8c and Figure 8f. Using Equation (4) for µ and setting
σeff = 100µm2, we have found that they are roughly of the order of 106 for |j| ∼ |l| ∼ 1.
Thus, we are deeply within the classical range. This is valid also for the subsequent
illustrations. At the same time, far tails of the comb spectra can experience quantum effects.

Next, we consider the effects of a nonzero walk-off. Nonzero values of α influence
neither the thresholds nor the outcome of the adiabatic procedure—the system still evolves
to a single-soliton steady state. The most evident effects are (i) a nonzero soliton velocity,
v01 6= 0, and (ii) asymmetry of the soliton profiles and the comb spectra. The larger the
|α|, the stronger is the asymmetry. This is illustrated by Figure 9. Compared to Figure 8,
we changed δλ from 0 to −1.08 nm, which corresponds to α ' 0.05. The asymmetry of
the soliton profiles and comb spectra is already evident. Furthermore, the soliton profiles
acquire pronounced tails. The value of |F(ϕ)|2min is now far from zero, and |S(ϕ)|2max is
about two times smaller than earlier. At the same time, the background values of the FH
and SH intensities are the same, and the total number of the comb lines N = N1 + N2 is
even slightly larger than it was at α = 0. Changing the sign of δλ results in the mirror
reflection of the graphs of Figure 9 about the central vertical line and in the changed sign of
the soliton velocity v01.
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Figure 9. The effect of walk-off on the soliton–comb properties. The only difference in the input
parameters as compared to Figure 8 is δλ = λp − λc

2 = −1.08 nm corresponding to the walk-off
parameter α ' 0.05. The subfigures (a,b) show assimetry of the dual soliton intensiety profiles, while
the subfigures (c,d) exhibit assimetry of the FH and SH comb spectra.

To gain new insights, we consider color maps of the velocity parameter |v01|/2πR and
of the total comb line number N = N1 + N2 on the δλ, η2 plane for a few representative
combinations of the decay rates γ1 and γ2, see Figure 10. The first three subfigures of the
upper row represent the maps of |v01|/2πR for the combinations γ1,2 = γ (a1), γ1 = γ,
γ2 = 10γ (b1), and γ1,2 = 10γ (c1) with γ = 107 s−1. Figure 10(a2,b2,c2) of the lower
row represent the corresponding maps of the total comb line number N. Figure 10(d1,d2)
give the additional cross-sections v01(δλ) and N(δλ) at η2 = 20 for our combinations of γ1
and γ2.

As evident from the maps, both |v01| and N grow monotonously with an increasing
η2. Regarding the dependences of these parameters on |δλ| (or |α|), they are decreasing
only outside a vertical central strip, whose width depends on γ1,2. The decrease of N(|δλ|)
and |v01|(|δλ|) persists for |δλ| > 10 nm. In short, large values of the walk-off parameter,
|α| � 1, are harmful for the soliton–comb generation in question.

The range of small |δλ| (or α), illustrated in some detail in the Figure 10(d1,d2), is
worthy of attention. The dependences v01(δλ) and N(δλ) at large values of η2 are not
always continuous. This means that small variations in δλ can lead to notably different
results when adiabatically increasing η2. Continuous changes in v01(δλ) and N(δλ) at
η2 = 20 in Figure 10 take place only for γ1 = 0.1γ2 = γ. The optimum value of |δλ| and
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the corresponding largest peak values of N take place for γ1,2 = 10γ. In accordance with
our definition of η2, they correspond to the largest h2 (and the pump power). Anyhow, the
increase in N via the optimization of δλ is not very large. Note lastly that the wavelength
range of 20 nm relevant to Figure 10 strongly exceeds the intermodal wavelength distance
of ' 0.08 nm so that the indicated spectral features are not available for the standard
experimental fine-tuning means.
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Figure 10. (a1–c1): Color maps of velocity parameter |v01|/2πR [MHz] on the δλ, η2 plane.
(a2–c2): The same for the total comb line number N = N1 + N2. The first, second, and third columns
refer to γ1,2 = γ, γ1 = γ, γ2 = 10γ, and γ1,2 = 10γ with γ = 107 s−1. Each map is obtained by
step-wise increase in η2 starting from the value of 2 and incorporates the data of 141× 151 = 21291 cal-
culation variants with up to 1024 Fourier harmonics taken into account. The insets in a1 to c1 indicate
the signs of v01. (d1,d2) give the cross-sections v01(δλ) and N(δλ) for η = 20 relevant to the maps
(a1–c1) and (a2–c2), respectively. Note different scales of δλ in (d1,d2).

Now we turn to the effects of the frequency detunings. These effects are of two
kinds. One can consider the effects of δ1,2 on the initiation of soliton–comb states via an
adiabatic increase in η2. These strong and important effects are considered in Section 5.2.
Alternatively, we can slowly vary δ1,2 upon reaching the above-considered soliton states at
large values of η2. This issue, which is largely (but not only) about the area of existence of
the developed soliton–comb states, is considered below.

We have extended our adiabatic procedure for the slow independent changes in δ1 and
δ2. In fact, two similar scanning procedures were used. Within the first one, we initially de-
termined the soliton velocity v01 and the comb line number N by increasing and decreasing
δ1 at δ2 = 0. After that, starting from point δ1, 0, we increased and decreased the detuning
δ2. The achieved steady-state values of the amplitudes Fj and Sl were used as new initial
conditions in each step of changing δ1 or δ2. Within the second procedure, the scanning
order was inverted: initially, we varied δ2 at δ1 = 0 and, after that, we increased and
decreased δ1 starting from points 0, δ2. We have verified whether the functions v01(δ1, δ2)
and N(δ1, δ2) depend on the scanning order. Additionally, we have made sure that each
steady state on the δ1, δ2 plane is still relevant to a single-soliton antiperiodic state.

Consider first the case of zero walk-off, α = 0. In our coordinate frame moving with
velocity v1, the positive and negative propagation directions are equivalent, such that the
soliton velocity difference v01 = v0− v1 is expected to be zero. Surprisingly, we have found
that this is not always the case. Figure 11a represents color map of |v01|/2πR for δλ = 0,
γ1 = 107, and γ2 = 108 s−1 (as in Figure 8). The uniformly dark-blue-colored lower and
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upper parts, which are separated from the rest by two slanted borders (bifurcation lines),
correspond to v01/2πR = 0 within an accuracy of ∼ 10−9 MHz. Between these borders we
have a smooth distribution |v01|(δ1, δ2) whose scale is comparable with that of Figure 10.
This distribution practically does not depend on the scanning order, so what is the sign of
v01? We have found that it randomly depends on the fine particularities of our calculation
procedure, such as the presence of very weak remnant velocity perturbations. In essence,
we have a clear example of the spontaneous symmetry breaking when the state with a high
symmetry (v01 = 0) becomes unstable against the excitation of one of two equivalent states
of lower symmetry with |v01| 6= 0. One of the most known examples of such a symmetry
breaking is the ferroelectric second-order transition below the Curie temperature.

Figure 11. Dependences of v01/2πR (a) and N (b) on δ1 and δ2 for δλ = 0, γ1 = 107, and γ2 = 108 s−1.
Each map incorporates the data of 90× 90 = 8100 calculation variants. Within the dark-blue-colored
parts in (a), v01 = 0.

Let us now take a look at the corresponding color map of N, Figure 11b. The distribu-
tion N(δ1, δ2) is rather smooth. The lower bifurcation line of Figure 11a is barely seen here,
while the upper line is pronounced. Remarkably, the increase in δ2 at δ1 ≈ 0 is favorable for
the comb in spite of the increasing instability threshold, see Equation (10). The characteristic
scale in δ1 here is about one, which strongly exceeds the scale β1 = 0.02 relevant to the
changes in ηth

2 (δ1). This assertion is general for η2 � 1; it is justified by plotting maps
of N(δ1, δ2) for different values of δλ and different combinations of γ1 and γ2. In short,
we have a vast family of single-soliton antiperiodic states continuously depending on the
input parameters.

Our attempts to generate periodic soliton–comb solutions at δ1,2 = 0 failed. The reason
why and the possibilities to obtain new solutions are indicated in Section 5.2.

5.2. Selective Generation of Periodic and Antiperiodic Multisoliton States

The idea for the generation of periodic and antiperiodic multisoliton states is rooted in
the threshold conditions of Section 3 and a simple observation. The point is that the FH pro-
file of Figure 8 with a sharp minimum emerges with increasing η2 as a continuous (without
bifurcations) development of the near-threshold profile |F|2 ∝ sin2(ϕ/2) corresponding
to the lowest threshold for FH harmonics with j = ±1/2. One can thus suggest that the
spatial structure of developed solitons can be determined by the threshold conditions.

To develop this idea, we consider the excitation diagrams of Figure 12. Diagrams (a)
and (b) correspond to the antiperiodic and periodic cases. The cyan circles on the horizontal
δ1/β1 axis separate the regions where the lowest thresholds correspond to different values
of the FH harmonic number |j|. Within a broad range in diagram (a), δ1 > −β1/2, including
the zero point, an adiabatic increase in η2 is expected to lead to single-soliton antiperiodic
states. This is in line with the above-considered results. For −9β1/4 < δ1 < −β1/4, we
can expect three-soliton antiperiodic states, etc.
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The periodic case, diagram (b), is expected to be different. In the range δ1 > −β1/2,
including the zero point, the lowest threshold corresponds to j = 0, i.e., to the generation
of the dual background. As this background is stable, no periodic solitons are expected.
However, in the range −5β1/2 < δ1 < −β1/2, where the lowest threshold corresponds
to |j| = 1, a two-soliton periodic state is expected. Similarly, we can hope to generate
four-soliton periodic states for δ1 < −5β1/2. As concerned the detuning of δ2, it plays a
passive role by nonselectively increasing all thresholds according to Equation (10).
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Figure 12. Diagrams of growth of antiperiodic (a) and periodic (b) multisoliton states by (i) adiabatic
increase in η2 and (ii) the subsequent slow change in δ1. The cyan circles indicate the borders of

the allowed ranges for initial values of δ1/β1. The lowest thresholds occur at δ
(j)
1 = −β1 j2. For

η2 & 10, stable states grown via the adiabatic two-step (i–ii) procedure exist in a broad range of δ1/β1

exceeding the shown one.

Now we consider the results of the corresponding numerical experiments on the
selective growth of multisoliton states [60]. Figure 13 shows the periodic two-soliton state
grown via the adiabatic increase in η2 for δλ = 0, γ1,2 = γ = 107 s−1, δ2 = 0, and δ1 = −β1.
Remarkably, the phase arg[F](ϕ) shows two opposite π-steps when crossing each of the
two narrow soliton areas. Thus, our periodic two-soliton solution consists of two equally
spaced and mutually repelling antiperiodic solitons. This structure emerges every time
spontaneously without imposing the antiperiodic conditions. The velocity of the state
is v0 = v1 = v2. The FH and SH comb spectra, shown in Figure 13c and Figure 13f,
are symmetric and structurally similar to those of Figure 8c and Figure 8f. Because of
the π-periodicity in ϕ, the comb line spacing is 2v1/R, and it is doubled compared to
the single-soliton case. Correspondingly, the number of significant comb lines (above
10−4) is about two times smaller than it would be in the single-soliton antiperiodic case at
η2 = 20. Remarkably, the spatial structures analogous (or similar) to those presented in
Figure 13a,b,d,e were obtained independently in [61–63] for the periodic states and were
interpreted as opposite domain walls.

Changing δ1 sequentially to δ
(j)
1 = −4β1 and −9β1, which corresponds to the lowest

threshold for |j| = 2 and 3, we have grown periodic four- and six-soliton states. They
all consist of pairs of the same antiperiodic solitons. The comb line spacing increases
with |j| accordingly. A further increase in |j| does not lead, however, to new multisoliton
states. Temporal development tends to break such states into the former two-, four-, and
six-soliton solutions. This feature is not related to an insufficiently small time step and/or
an insufficiently large number of harmonics taken into account. Additionally, we mention
the case δ1 = 0 relevant to the lowest threshold for j = 0. Our adiabatic procedure leads
here, as expected, to a dual background steady state F̄, S̄.

Generalization of these results to the case of nonzero walk-off (α 6= 0) and different de-
cay rates γ1 and γ2 is rather trivial. We still have multisoliton periodic solutions consisting
of pairs of the former antiperiodic solitons moving with velocity v0 6= v1,2.
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Figure 13. Periodic adiabatically grown two-soliton state for η2 = 20, α = 0, δ1 = −β1, δ2 = 0, and
γ1,2 = γ = 107 s−1. The upper and bottom rows refer to the FH and SH characteristics, respectively.
They show the normalized intensity profiles (a,d), the phase profiles (b,e), and the comb spectra (c,f).
An equal distance between the antiperiodic solitons indicates their mutual repulsion.

Now we switch to the multisoliton antiperiodic states relevant to semi-integer values
of j, see Figure 12a. Figure 14 representatively shows the FH and SH intensity profiles
for the antiperiodic three-soliton state grown for δ

(3/2)
1 = −9β1/4 and α = −1. The other

input parameters are the same as in Figure 13. Each of the three equally spaced solitons has
a familiar structure with oscillating tails. Owing to a relatively large negative value of α,
the tails are strongly pronounced and the spatial asymmetry is inverted as compared to
Figure 9. The soliton velocity difference is v01 ' 2.2× 105 cm/s. Interestingly, antiperiodic
five- and seven-soliton states can be easily grown for |j| = 5/2 and 7/2 in spite of the
strong tail overlaps. This contrasts with the multisoliton periodic states.
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Figure 14. Antiperiodic adiabatically grown three-soliton state for α = −1 (δλ ' 8 nm) and
δ1 = −9β1/4. The other parameters correspond to Figure 13. (a,b) correspond to the normalized FH
and SH intensity profiles.

5.3. Natural PM: The Absence of Solitons

The natural phase matching that can be realized in LN-based resonators at λ2 '
532 nm is of special interest. Avoiding the complicated procedure of the radial poling and
the availability of tunable laser sources in this range make it very attractive. Furthermore, it
was indicated [64] that the value of the walk-off parameter can be substantially decreased for
sufficiently small microresonators (R < 1 mm) by using the effects of geometric dispersion.
This implies the use of proper Sellmeier equations for no,e(λ) [32,65] and relations for the
modal frequencies including the size corrections [29], see Section S2 of the Supplementary
Materials for details. It turns out, however, that the main problem with the use of natural
PM for the soliton–comb generation is the dispersion issue [66]. In contrast to the above-
considered cases, the FH and SH dispersion parameters are both negative: v′1 ' −0.64 and
v′2 ' −1.5 of 104 cm2/s.
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Aiming to see the role of the signs of the dispersion parameters, we first conducted
some test numerical experiments. For γ1,2 = 107 s−1, α = 0, δ1,2 = 0, the absolute values
|β1| = 0.02 and |β2| = 0.01, and four combinations of the signs of β1,2, we have launched
our adiabatic procedure to grow the antiperiodic soliton states. In two cases with β1β2 < 0,
we obtained the same known single-soliton solution, see Figure 8. In two other cases with
β1β2 > 0, we obtained no soliton states, and the comb spectra remained undeveloped.
Additionally, we varied the values of the input parameters α, γ1,2, and δ1,2 and switched
from the antiperiodic to periodic case. No soliton solutions were found as well. The sign of
the product β1β2 is thus crucial for the soliton formation.

6. Solutions for FH Pumping

The case of FH pumping is important for experiment because it corresponds to the
conditions of SH generation, including the tuning issues. At the first sight, switching to
the FH pumping case is trivial—it is sufficient to set h2 = 0 and h1 6= 0 in sets (3) and (8).
The normalized pump amplitude is here η1 =

√
2µh1/γ1

√
γ1γ2, and only the periodic

states are allowed. While the threshold conditions are more complicated now, they can be
evaluated numerically for any set of the input parameters. With these preliminaries, we
consider the most important cases [66].

We start from the vicinity of the zero walk-off point 2λc ' 2698 nm. The value of
the walk-off parameter α is controlled here by the wavelength difference δλ = λp − 2λc,
and the dispersion coefficients β1,2 can be treated as constants. Setting δλ = 0 (α = 0) and
δ1,2 = 0 brings us to the situation where the lowest instability threshold, ηth

1 = 3
√

2 ' 4.24,
corresponds to j = 0, i.e., to auto-oscillations of the dual background [54]. Figure 15
illustrates what happens with increasing η1 when applying our adiabatic procedure at
γ1,2 = γ = 107 s−1. We do see auto-oscillations of |F0|2 and |S0|2 near the threshold, see
Figure 15a. The oscillation amplitude and period increases and decreases with increasing
η1, respectively, while the harmonics with j, l 6= 0 remain very small. For η1 & 10, these
spatial harmonics become notable. Their amplitudes grow gradually, and the number of
significant comb lines reaches N ≈ 10 for η1 = 11 with the comb line distance δj = δl = 1.
The corresponding normalized FH and SH intensity profiles are shown in Figure 15b
by lines 1 and 2. A further increase in η1 results, however, in a sharp transition to an
irregular spatial behavior, see Figure 15c and Figure 15d. This contrasts strongly with the
case of SH pumping. Variations in the input parameters γ1,2 and δ1,2 do not change this
unfavorable scenario.
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Figure 15. FH pumping at α = 0 and δ1,2 = 0. (a) A fragment of steady-state auto-oscillations at
η1 = 4.6; the spatial harmonics with j, l 6= 0 are negligible here. (b) FH and SH intensity profiles
(lines 1 and 2) at η1 = 11. (c,d) FH and SH intensity profiles at η1 = 12.

With the increase in |α|, the threshold values ηth
1,j with j 6= 0 quickly decrease and

become lower than the internal instability threshold. This is illustrated by Figure 6a relevant
to our input parameters. For α . 1, the modes with |j| � 1 possess the lowest thresholds.
The application of our adiabatic procedure to the case |α| = 1, δ1,2 = 0 results, e.g., in the
excitation of a π/3-periodic dual state (with six intensity peaks) near the threshold. With
the increase in η1, it transforms via a bifurcation to a π/6 periodic state (at η1 ' 6.7). For
η1 & 16, the system shows again an irregular spatial behavior. The number of significant
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comb lines N does not exceed 25 for η1 . 16. The employment of the nonzero detunings
δ1,2 does not help much.

For |α| & 10, the threshold values ηth
1,j(|α|) approach two from above, and the selective

excitation of harmonics with |j| = |l| = 1, 2 becomes possible. However, the thresholds
for |j| > 2 are only slightly higher. Consider representatively the case α = 11, δ1 = 1/2,
and δ2 = 0 relevant to the lowest threshold for |j, l| = 1. Applying the adiabatic procedure,
we have a π-periodic dual state near the threshold. For η1 ≈ 7 and 18, it transforms
sequentially via bifurcations to π/2- and π/4-periodic states. Correspondingly, the comb
line distance δj = δl increases from 2 to 4 and lastly to 8. Figure 16a and Figure 16b
show the complicated steady-state π/4-periodic asymmetric FH,SH intensity profiles for
ηmax

1 = 20, while Figure 16c and Figure 16d exhibit the corresponding comb spectra. While
the steady state found shows a regular spatial behavior, it cannot be regarded either as a
soliton state or a pronounced comb state.
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Figure 16. FH pumping at 2698 nm. (a,b) Periodic FH and SH intensity profiles for α = 11, δ1 = 1/2,
δ2 = 0, and η1 = 20. (c,d) The corresponding FH and SH comb spectra. The number of significant
comb lines (higher than 10−4) is N = 28, and the comb line distance δj = δl = 8.

For |α| = 50, the above scenario of the decreasing spatial period and increasing comb
line distance with increasing η1 remains the same. At η1 = 20, we have a π/3 periodic
dual state with a modest comb line number N = 20. The suppression of SH harmonics
with l 6= 0 and the asymmetry of the intensity profiles and comb spectra are strongly
pronounced.

Lastly, we touch on the case of the natural PM at λp ' 1664 nm, when small and/or
modest values of |α| are available owing to the geometric dispersion, see Section S2 of the
Supplementary Materials for details. The values of the quality factors Q1,2 are expected to
be substantially larger than they are at 2698 nm [67], which leads to larger absolute values of
the dispersion coefficients β1,2. As representative values, we chose R = 1 mm, β1 = −0.04,
and β2 = −0.15, which corresponds to Q1,2 ≈ 3× 108. The relevant dependences ηth

1,j(α)

are presented in Figure 6b. While they differ from the threshold dependences of Figure 6a,
one important feature is the same: it is impossible to selectively excite the modes with
|j| = 1, 2 for |α| . 10.

A large number of our numerical experiments, conducted with different values of
α and modest absolute values of δ1,2, persistently show the same scenario: increasing
η1 above the threshold leads (via bifurcations) to dual states with smaller and smaller
spatial periods (larger and larger comb line spacing) and, ultimately, to an irregular spatial
behavior. The larger α, the longer is the interval of η1 with the regular behavior. On the
other hand, the number of significant comb lines N within this interval remains modest; it
does not exceed 15. No signs of soliton–comb states were detected. Possibly, such states
were seen in numerical calculations of [68,69] for sufficiently large mismatches.

7. Discussion

Experimental and theoretical studies of dissipative χ(2) soliton–comb states in mi-
croresonators represent a vast, perspective, and almost unexplored research area. It is
strongly different from the corresponding Kerr soliton research area. In turn, it is much
broader than the studies of conservative Kerr solitons. The χ(2) nonlinearity is fundamen-
tally different from Kerr’s one, which results in a number of specific qualitative features
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including the duality of the nonlinear states and the necessity to employ the phase matching
and minimize the temporal walk-off. The number of important variable parameters of the
system is significantly larger than it is in the Kerr case. The deficit of analytical tools forces
researches to rely on numerical methods.

Combining analytical and numerical tools and approaches, we predicted an un-
precedentedly vast family of dual χ(2) soliton–comb steady states. When using the term
“vast”, we mean a continuous dependence of the parameters of the state on all the input
parameters—the pump power, the modal quality factors, the frequency detunings, and
the walk-off. The found states are self-starting, i.e., they are easily accessible via not very
abrupt switching the pump on and changing the detunings. The soliton–comb states are
divided into two topological classes—periodic and antiperiodic—depending on the parity
of the azimuth number of the pumped SH mode. The steady state solutions can be single-
and multisoliton ones. All our soliton–comb states are dissipative; they cannot be reduced
to (obtained from) the known conservative soliton solutions.

Remarkably, the predicted self-starting soliton–comb states are allowed only for the
SH pumping. Furthermore, they require opposite signs of the FH and SH dispersion
coefficients. This condition is fulfilled near the zero walk-off point λ2 ' 1349 nm in LN-
based resonators. However, the phase matching at this point requires a precise radial
poling. Being available [15–18], it represents a serious technical problem. For natural phase
matching in LN resonators, the necessary condition is not fulfilled, and soliton–comb states
seem to be forbidden. Despite our strong efforts, no soliton–comb solutions were found for
the FH pumping. This contradicts to the initial expectations about a similarity of the FH
and SH pumping cases but has profound reasons behind it.

Both intuitive considerations and numerical modeling indicate that substantial differ-
ences in the FH-SH group velocities v12 = v1 − v2, which are typical of χ(2) resonators, are
unfavorable for soliton–comb generation. Quantitatively, this means that the combination
(|v12|/c)× (λ2/R)×Q2 has to be not much larger than one. This condition is not generally
fulfilled for nonstructured high-Q resonators. The minimization of the walk-off parameter
can be accomplished via a proper radial poling. Thus, there is one more physical reason to
employ the radial poling for the χ(2) comb generation.

Despite our massive failed efforts to find self-starting soliton–comb steady states for
the FH pumping, we cannot claim that all sensible combinations of the input parameters
(η1, α, β1,2, δ1,2, and γ1,2) are exhausted. Additionally, we cannot claim that the initial
assumption of the same transverse structure of the modes within each of the FH and SH
frequency domains is fully justified. This problem still remains open for both the χ(2) and
χ(3) resonators. It is likely that the suppression of the excitation of unwanted transverse
modes requires further efforts for the mode management.

A distinctive feature of our approach is the employment of a simple classical equivalent
of the Hamiltonian quantum formalism used in [4,5,17] and many other papers. While the
quantum electrodynamic aspects of microresonators are important [17], the comb regimes
belong to the classical range where the use of quantum language is redundant. As we have
shown, the actual numbers of modal light quanta in the comb spectra are very large.

The effects of χ(3) nonlinearity in χ(2) microresonators is one more issue to consider.
The possibility to neglect the χ(3) nonlinearity is largely controlled by the modal Q factors.
Let us consider for simplicity the SH pumping case. The pump power thresholds P (2)

th and

P (3)
th for the parametric instability caused by the χ(2) and χ(3) nonlinearities are roughly

proportional to 1/Q3 and 1/Q2, such that for Q1,2 & 106, the effects of Kerr nonlinearity
are expected to be negligible. For modest quality factors, Q . 105, which are typical, e.g.,
for ring waveguides, the situation can be more complicated. An interplay between the χ(2)

and χ(3) nonlinear processes becomes possible [48].
The above-considered soliton–comb steady states in χ(2) microresonators are not the

first predicted ones and are known in the literature. To the best of our knowledge, the other
known stable dissipative soliton states [46–49] belong to the periodic ones. Furthermore,
they are not self-starting, i.e., not easily accessible. The single-soliton numerical solutions
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of [46] are relevant to the FH pumping at the zero walk-off point. Both bright–bright and
dark–dark locally stable solitons were exhibited. Similar numerical soliton solutions were
found in [47,48]. Additionally, quasi-solitons at very large detunings, |δ1,2| � 1, were
predicted. Remarkably, the soliton–comb states of [46] are allowed when the dispersion
coefficients have the same and opposite signs. The generation of flat-top solitons via an
additional spatial modulation of the pump amplitude was found numerically in the SH
pumping case when the dispersion coefficients had opposite signs [49]. A considerable
amount of soliton-related models, see, e.g., Ref. [70], were proposed for the bulk parametric
oscillators. Their detailed analysis is beyond the scope of this mini-review.

The first experimental attempts to obtain χ(2) combs in high-Q LN-based microres-
onators dealt with the FH pumping, the natural phase matching, and large walk-off [42,43].
Neither χ(2) solitons nor broad comb spectra similar to the Kerr soliton spectra were ob-
served. This is in agreement with our theoretical results on the necessary conditions for
the realization of such regimes. The authors of [44] claim for the discovery the Pockels
soliton microcomb in an aluminium nitride microring resonator by employing SH pumping.
The parameters used correspond to modest quality factors Q1,2 < 106, a large walk-off

parameter |α| � 1, and the threshold power P (2)
th only slightly below P (3)

th . The observed
broad FH comb spectrum was practically symmetric, which is the fingerprint of the absence
of the dominating contribution of the χ(2) nonlinearity. The observed and numerically
modeled combs are due to the Kerr nonlinearity. The quadratic nonlinearity is mostly
involved in initiating the parametric instability, see also [71]. Thus, net χ(2) soliton–comb
states are still waiting for experimental discovery and exploration.

8. Conclusions

A vast family of stable soliton–comb steady states is accessible in χ(2) microresonators
by switching the monochromatic pump on not very abruptly. The necessary conditions for
soliton–comb generation are (i) pumping into a SH resonator mode and (ii) the opposite
signs of the FH and SH dispersion coefficients. Additionally, the minimization of the group
velocity (free spectral range) difference for the phase-matched FH and SH modes is highly
desirable. For LN-based resonators, the latter can be accomplished simultaneously with (ii)
by using proper radial poling of the resonator. Pumping into FH resonator modes is not
favorable for the realization of soliton–comb states. The employment of high-Q resonators
(Q > 107) ensures low generation thresholds (within the µW range) and a negligibly small
influence of the Kerr nonlinearity.
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