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We present modulation instability analysis including azimuthal perturbations of steady-state continuous wave (CW)
propagation in multicore-fiber configurations with a central core. In systems with a central core, a steady CW
evolution regime requires power-controlled phase matching, which offers interesting spatial-division applications.
Our results have general applicability and are relevant to a range of physical and engineering systems,
including high-power fiber lasers, optical transmission in multicore fiber, and systems of coupled nonlinear
waveguides. © 2013 Optical Society of America
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The fast developing technology of optical multicore
fiber (MCF) offers the possibility of spatial-division multi-
plexing (SDM), enabling a scale-up in transmission
capacity per fiber that is a crucial challenge in optical
communications [1,2]. It is often assumed that, though
the addition of spatial channels is technically different
from appending spectral channels, in terms of general
consideration and system management, SDM in many
senses is quite similar to the technology of wave-division
multiplexing (WDM). One of the goals of this work is to
point out that in MCF spatial channels may be nonequal,
and the transfer of channel management approaches
from WDM to SDM is not always straightforward. For in-
stance, in WDM the signal-to-noise ratio (SNR) is often
defined per spectral channel, assuming close to uniform
spectral-power density distribution between channels.
As we will show below, in MCF configurations with a
central core (see Fig. 1, e.g., seven-core MCF [1,2]), a
steady-state CW propagation with equal power in all spa-
tial channels is not possible at all, making in this system
the regime with equal spatial-channel powers inherently
more prone to cross talks. Therefore, the SNR in SDM
systems should be defined in a way different to standard
WDM systems, taking into account difference between
spatial channels.
Another important emerging application of MCF is in

the field of high-power fiber lasers [3]. Nonlinear effects
limit the power that can be transmitted in a single-mode
fiber. In a MCF, light in each core may be transmitted
below threshold of the detrimental nonlinear effects
while the total coherently combined power can be high.
MCF technology is used in high-brightness sources based
on the coherent combining technique.
In both major applications of MCF, nonlinear inter-

actions between light in different cores can critically
affect system performance. Therefore, knowledge of the
limits imposed by the nonlinearity on coherent transmis-
sion of light through the MCF is of high practical

importance. Despite this, the nonlinear dynamics of light
in MCF is not yet well studied.

The mathematical analysis of nonlinear wave propaga-
tion in MCFs is also a generic problem with numerous
links to the theory of nonlinear discrete systems (see
e.g., [4–19] and references therein). As was already dem-
onstrated in [4] in MCF with nonequal cores (the most
simple and general case is N peripheral cores surround-
ing the central core), phase matching and stable coherent
propagation are possible only due to nonlinear effects for
certain power balance between cores. In [4] the stability
problem of steady-state propagation was solved in the ra-
dial approximation without consideration of azimuthal
perturbations. It has been shown in [4] that, surprisingly,
even at high light intensities, stable coherent propagation
is possible. In this Letter, we extend the stability analysis
to the important case of azimuthal perturbations, and we
account for the possibility of power transfer between
peripheral cores (see Fig. 1). In the optical communica-
tion context, our results provide the underlying theory
explaining why in the spatial-division-multiplexing tech-
nique with MCF having a central core, spatial power
distribution (power per spatial channel) should not be
uniform, but instead has to be adjusted to the MCF geom-
etry, as described below.

The basic model considered here is a version of the
discrete nonlinear Schrödinger equation:

i
∂Ak

∂z
�
XN
m�0

CkmAm � 2γkjAkj2Ak � 0; k � 0;…; N:

(1)

Here Ak is the field in the k-th core (k � 1; 2; 3;…; N),
with A0 being the field in the central core, and Cmk is
the coupling coefficient between modes m and k;
Ck;k�1 � C1�k ≠ 0�, Ck;0 � C0, Ckk � βk. The coefficients
related to wave numbers and nonlinearity in peripheral
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cores, without loss of generality, are assumed to be equal
(βk � β1 and γk � γ1). We assume, though, that in general
nonlinear coefficients in central and peripheral cores can
be different. It is convenient to rewrite these equations in
normalized units:

i
∂U0

∂z
� 1

N

XN
k�1

Uk �
2Nγ0
γ1

jU0j2U0 � 0; (2)

i
∂Uk

∂z
��κ−2C�Uk�C�Uk�1�Uk−1��U0�2jUkj2Uk� 0.

(3)

Here we introduced normalized variables: A0;k ����������
P0;1

p
U0;keiβ0Lz; z0 � z∕L; L � 1∕�C0

�����
N

p
�, C � C1∕

�C0

�����
N

p
�, and P0 �NP1 �N3∕2C0∕γ1, κ� �β1 − β0 � 2C1�∕

�C0

�����
N

p
�. The total (normalized by P0) power Pt �

N�jU0j2 � jU1j2� is a conserved quantity.
As was pointed out in [4], in the case of multiple

peripheral cores surrounding a central core, even the
existence of a steady-state solution is nontrivial. To pro-
vide for coherent steady-state CW light evolution in
multiple cores, the difference in propagation constants
has to be compensated by the nonlinear phase shifts:

fU0; Ukg � fA;Bg × eiλz; Γ � B
A
; (4)

jAj2 � Pt

N�1� Γ2� ; λ � Γ� 2γ0Pt

γ1�1� Γ2� ; (5)

Γ4
−

�
κ � 2Pt

N

�
Γ3

−

�
κ −

2γ0Pt

γ1

�
Γ − 1 � 0: (6)

In this Letter, we limit analysis only by the case of in-
and out-of-phase fields A and B, meaning real values of Γ.
More general case will be presented elsewhere. The
steady-state solutions in such a system are possible only
with a certain imbalance (given by the factor) between
powers propagating Γ2 � B2∕A2 in central (A) and ring
(B) cores. The physics of this effect is rather transpar-
ent—the power split is due to the nonlinear phase-shift
contribution to the phase-matching condition required
for coherent propagation in multiple cores. The amount
of power that has to be coupled to each core for steady-
state evolution given by the solution of Eq. (6) depends
on four parameters: (1) N ; (2) input power Pin (or total
power Pt); (3) the linear phase mismatch κ; and (4) the
ratio between the nonlinear coefficients γ0∕γ1 (see Fig. 2).
To get the idea of the solution structure, consider the
practically important case Pt ≫ 1. In this case, from
Eq. (6) we will get explicitly four families of solutions.
In Γ1 � 2Pt∕N and Γ3 � γ1∕�2γ0Pt�, most of the energy
propagates are in the ring or central core, respectively.
For Γ2;4 � �

����������������
γ1N∕γ0

p
, the ratio of energy in the ring

and the central core is independent of the propagating

power. Negative Γ means out-of phase fields in the
central and peripheral cores.

Consider now the stability of steady-state solutions of
Eqs. (4)–(6), the analogue of the MI for a low-dimension
discrete system. The small amplitude disturbance is
taken in a standard form fU0; Ukg � fA� a� ib; B�
c� id� �f � ih�eiskg × eiλz and k � 1; 2; 3;…; N . It is
easy to see that perturbations of Uk proportional to
exp�pz� have an isotropic (k independent) part (consid-
ered in [4]) and an angular (k dependent) contribution.
Straightforward analysis shows that the angular part of
perturbations is independent of the isotropic part, and
the increment (growth rate) of instability due to angular
perturbations is

p2l �
 
1
Γl

� 4C sin2
�
s
2

�! 
4Γ2

l Pt

N�1� Γ2
l �
−

1
Γl

− 4C sin2
�
s
2

�!
;

(7)

here l � 1, 2, 3, 4 corresponds to four branches of CW
steady states. Recall that C � C1∕�C0

�����
N

p
�.

From the periodicity condition with m � 1; 2; 3;…; N ,
note that the expression for the increment in Eq. (7)
looks structurally exactly as the classical formula for
MI growth rate [20,21]: p2l � Λ�αPt − Λ�. However, here
Λ � 1∕Γl � 4C sin2�s∕2� is a discrete variable. Equa-
tion (7) without the term 1∕Γl describes the modulation
instability (MI) in discrete systems (see e.g., [7,8,12]) and
in the limit s ≪ 1 transforms into conventional MI growth
rate [20,21]. We see that the effect of a central fiber 1∕Γ
plays a stabilizing role for positive Γ. For negative Γ,
mode Γ4, the presence of the central core enhances
the instability. We discuss below only the new features
introduced by the possibility of a positive Γ.

The minimal value of s � 2π∕N , m � 1 gives the
threshold (in power) of the azimuthal MI:

4Γ2
l Pt

N�1� Γ2
l �

<
1
Γl

� 4C sin2
�
π

N

�
: (8)

Here Γl � Γl�N; Pt� is a function of N and Pt, making
this equation an implicit condition on power. For con-
tinuous case N → ∞, MI has no threshold. However,
both the discreteness and presence of a central core
(with positive Γ) suppress the instability. The maximum
growth rate pmax is reached at

2Γ2
l Pt

N�1� Γ2
l �

� 1
Γl

� 4C sin2�πm∕N �; (9)

and pmax � 2Γ2
l Pt∕�N�1� Γ2

l �. The instability is devel-
oped at the length L ∼ 1∕pmax.

Analysis of the analytical asymptotic solutions (valid at
Pt ≫ 1) shows that only Γ3 is a stable solution (in some
range of parameters in the plane �N; Pt� shown by color
in Fig. 3). All other solutions Γ1;2;3 are unstable. In the
case of angular perturbations, it is not possible to derive
an exact analytical expression defining the stability zones
for all values of Pt. The stability boundaries for Pt not
large can be found numerically. The calculations for
the sufficient conditions of stability and instability for
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Γ3�N; Pt� and, thus, define stable and unstable areas in
the plane �N; Pt� as illustrated by Fig. 3. The threshold
curve in Eq. (8) for Γ3, when a big fraction of energy
is concentrated in the central core, is presented in Fig. 3.
The increment of instability p2 as a function of s for Γ2
and Γ3 is depicted in Fig. 4 for various N and Pt. We see
that for the fixed Pt, the growth rate is decreased with the
number of cores. The intensity in every core is going
down with N increase, and the MI is determined by the
local radiation intensity. However, one can see that the
growth decrease is slower then 1∕N , which indicates that
the increase in core numbers makes MCF more suscep-
tive to the MI.
The maximum power Pmax that can be transported in a

single core in unrelated to the threshold power Pth for the
instability calculated above. Hence, our analysis paves
the way for design of MCF that will support the stable
propagation of the total power Pt well above Pmax.
The coherent output from the fiber end can be then com-
bined in one beam leading to the compact and efficient
beam-combining scheme.

Nonlinear instability leads to periodic exchange of
power between cores. With a growing number of cores,
these oscillations may become stochastic. As a result, the
instability makes power dynamics uncontrollable. There-
fore knowledge of the criteria of instability onsets is im-
portant for the design of physical systems and devices
based on MCF. The considered instability is an extreme
discrete limit of the conventional MI in the continuous
media and discrete systems (see e.g., [7,8,12–16,20–22]
and references therein). Due to the generality of the
master equations, we anticipate that our results may pro-
vide a new outlook at the traditional arrays of coupled
nonlinear waveguides and nonlinear lattice research
[5–19]. We would like to stress also that, although the
presented analysis deals with the CW propagation, the
obtained results are applied to time-dependent fiber-
communication channels. In that case, the power should
be understood as time-averaged signal characteristics,
such as the average signal power. Note also that the pre-
sented theory can be generalized in a straightforward
manner to pulse propagation in MCF. The efficiency of
nonlinear matching through a fundamental soliton cou-
pling from one fiber into another studied in recent work

Fig. 1. Schematic depiction of the MCF and power exchanges
between cores.

Fig. 2. Four values of Γ corresponding to different power
splits between cores as functions of total input power; here
γ0∕γ1 � 0.5 and κ � 1. Here different curves for each branch
correspond to N varying from 3 to 12 (from the bottom to
the top, from left to right for green curve).

Fig. 3. Angular stability area (shown by color) of Γ3 (Γ1, Γ2,
and Γ4 are unstable) corresponding to different values of the
total power Pt and N ; here γ0∕γ1 � 1 and κ � 1.

Fig. 4. Increment of instability p2 as a function of s for Γ2 and
Γ4 corresponding to different Pt and N (red dashed line: N � 6;
solid blue: N � 12; solid-dotted black: N � 24).
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[23] has similarities with CW power matching examined
here. This paves the way to numerous applications; for
instance, a controlled Raman red-shift and supercontin-
uum generation.
To conclude, in this Letter we have presented a theory

of an instability, including azimuthal perturbations of a
steady-state CW propagation in multicore-fiber configu-
rations with a central core. In MCF with a central core,
a steady-state CW propagation requires power-supported
phase matching. This has an important consequence for
SDM. In the context of optical-fiber communications, us-
ing MCF our results can be understood in the following
way: in the considered system of MCFs with a central
core, a power per spatial channel cannot be uniform
in a stable propagation. Stable propagation requires cer-
tain disbalance between the power in a central core and
other given by Γ2

l . This disbalance depends on MCF
geometry and other system parameters as described
above. In particular, this means that the SNR should
not be introduced per spatial channel and more sophis-
ticated definitions are required. The developed theory is
rather generic and has a number of applications from
high-power fiber lasers to bulk nonlinear waveguiding
systems.
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